A black hole weighing more than a billion suns appears to have gotten the boot toward the outer edges of its galaxy.
Data from the Hubble Space Telescope and other observatories reveal a supermassive black hole zipping away from the center of its galaxy at a 7.5-million-kilometer-per-hour clip. It’s moving so quickly that it could leave the galaxy for good in 20 million years, says Marco Chiaberge of the Space Telescope Science Institute in Baltimore. Only gravitational waves — ripples in the fabric of spacetime — could give the black hole such a kick, Chiaberge and colleagues report March 30 in Astronomy & Astrophysics. Hints of huge black holes ejected from a galactic center have been reported before (SN: 5/24/08, p. 12). This discovery offers some of the most convincing evidence that black holes can get kicked out of their galaxies by gravitational waves and suggests that it occurs more often than astronomers thought.
“This is a very nice candidate for a recoiling supermassive black hole,” says Francesca Civano of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Recoiling black holes are created when two monster black holes from different galaxies merge, says Civano, who was not involved in the new study. If the black holes have different masses and rotate at different rates, the collision can generate gravitational waves more strongly in one direction, booting the newly merged black hole the other way.
A radiation-gushing supermassive black hole called quasar 3C 186 and its host galaxy, about 8 billion light-years from Earth in the constellation Lynx, tipped off Chiaberge and colleagues to the recoiling black hole. The team noticed that the quasar wasn’t at the center of the galaxy, where it typically should be. “We knew this was clearly weird. It was clearly different than all of the other quasars and galaxies we were seeing,” Chiaberge says.
The team calculated that the quasar was 35,000 light-years from its host galaxy’s center — about 10,000 light-years more than the distance separating the sun and the center of the Milky Way. 3C 186 is a well-studied object, so the team sifted through past observations of the quasar and galaxy and found data revealing how fast the gas surrounding the monster black hole moves. The researchers compared it with how fast the star-forming gas in the galaxy moves. The monster black hole was traveling much more quickly, with a velocity that would have to come from something forceful, equivalent to 100 million stars exploding simultaneously. Gravitational waves could provide such a kick.
The Hubble images also revealed curved wisps of stars and gas extending from the galaxy. Such faint tails suggest that the galaxy collided with another galaxy in the past, giving weight to the team’s claim that gravitational waves from colliding black holes could have given 3C 186 its kick.
Evidence of recoiling black holes is hard to find, but it’s the easiest explanation for the data in the new paper, Civano says. The new work, she notes, also suggests recoiling black holes could be more common than astronomers thought, but missed in earlier observations. “They might just be hidden in well-known sources, like 3C 186,” she says.
The heavy-duty material used to build bridges and sculpt skyscrapers could learn a few tricks from humble bones.
Steel’s weakness is its tendency to develop microscopic cracks that eventually make the material fracture. Repeated cycles of stress — daily rush hour traffic passing over a bridge, for example — nurture these cracks, which often aren’t apparent until the steel collapses. Bones, however, have a complex inner structure that helps them deal with stress. This structure differs depending on the scale, with tiny vertically aligned fibers building up into larger cylinders. To mimic this variability, researchers fabricated steel with thin, alternating nanoscale layers of different crystal structures, some of which were just unstable enough to morph a bit under stress. That complicated microstructure prevented cracks from spreading in a straight line, slowing their take-over and preventing the material from collapsing, the scientists report in the March 10 Science. This experimental steel requires much more testing before it can be used in construction, says study coauthor C. Cem Tasan, a materials scientist at MIT. But the principles could be applied to other mixed-composition metals, too.
Soon after systems biologist Juergen Hahn published a paper describing a way to predict whether a child has autism from a blood sample, the notes from parents began arriving. “I have a bunch of parents writing me now who want to test their kids,” says Hahn, of Rensselaer Polytechnic Institute in Troy, N.Y. “I can’t do that.”
That’s because despite their promise, his group’s results, reported March 16 in PLOS Computational Biology, are preliminary — nowhere close to a debut in a clinical setting. The test will need to be confirmed and repeated in different children before it can be used to help diagnose autism. Still, the work of Hahn and colleagues, along with other recent papers, illustrates how the hunt for a concrete biological signature of autism, a biomarker, is gaining speed. Currently, pediatricians, child psychologists and therapists rely on behavioral observations and questionnaires, measures with limitations. Barring genetic tests for a handful of rare mutations, there are no blood draws, brain scans or other biological tests that can reveal whether a child has — or will get — autism.
Objective tests would be incredibly useful, helping provide an early diagnosis that could lead to therapy in the first year of life, when the brain is the most malleable. A reliable biomarker might also help distinguish various types of autism, divisions that could reveal who would benefit from certain therapies. And some biomarkers may reveal a deeper understanding of how the brain normally develops.
Scientists are simultaneously sanguine and realistic about the prospect of uncovering solid autism biomarkers. “We have great tools that we’ve never had before,” says psychiatrist Joseph Piven of the University of North Carolina School of Medicine in Chapel Hill. Scientists can assess genes quickly and cheaply, gather sophisticated information about the shape and behavior of the brain, and rely on large organized research collaborations aimed at understanding autism. “That said, I’ve done this long enough to know that people make all kinds of claims: ‘In the next five years or the next 10 years, we’re going to do this,’” Piven says. The reality, he says, is more challenging. Hahn agrees. “I think it will take quite a bit longer” to find clinically useful biomarkers, he says. “It’s not what parents want to hear. The thing is, this is a very difficult medical disease with many different manifestations.” Researchers have turned up differences in the brain between people with and without autism, including size and growth patterns, connections between areas and brain cell behavior. But the variability in autism symptoms — and causes — has prompted scientists to look beyond the brain in the search for biomarkers.
“Autism may not be purely a brain disorder,” says neuroscientist Eric Courchesne of the University of California, San Diego. Scientists are looking for important clues to autism in gut microbes, skin cells, the immune system and factors that circulate in the blood.
That was the rationale behind Hahn and colleagues’ experiment, which compared compounds in the blood of 83 children with autism to those of 76 children without the disorder. The researchers focused on a group of molecules implicated in autism. These molecules carry out an intricate series of metabolic reactions called folate-dependent one-carbon metabolism and transsulfuration. Earlier work suggested that these processes are altered in people with autism.
Hahn and colleagues developed a statistical tool that examined the relationships between 24 of these molecules. Instead of looking at the concentration of each individual player, the team wondered if a more global view would help. “Could you find patterns in these that give you a much more predictive pattern than if you look at them one by one?” he asks. The answer, their results showed, was yes.
The statistical tool correctly called 97.6 percent of the children with autism and 96.1 percent of the children without. Just two of 83 children on the autism spectrum were misclassified as being neurotypical, and three of 76 children without autism were misclassified as being autistic. Compared with other methods described in the scientific literature, “the numbers we got out were very, very good,” Hahn says.
Those results are “quite interesting as an example of a blood test,” says neuroscientist Dwight German of the University of Texas Southwestern Medical Center in Dallas. But as a researcher who also works on blood-based biomarkers of autism, German is familiar with a huge caveat: Blood can be fickle. Medications, age and even time of day can influence factors in the blood, he says. “There’s an awful lot of testing you have to do to show that what you’re measuring is related to the disorder and not what they ate for breakfast,” he says.
If these metabolic differences are present just after birth, the blood test could be an extremely early indicator of autism. But much more work needs to be done to validate the new approach, including tests on children younger than 3, Hahn says.
Other issues need to be resolved, too. When tested on 47 siblings of people with autism, children who presumably share genetics and environment with an autistic sibling but who don’t have the disorder themselves, the statistical tool’s performance worsened a bit. The tool incorrectly classified four of the 47 siblings as having autism.
For tougher distinctions between high-risk kids like these, scientists have had success looking back to the brain. Recently, Piven and colleagues studied babies born to parents who already had an autistic child. These “baby sibs” have about a one in five chance of developing autism themselves, a rate higher than that of a child without an autistic sibling. By studying this high-risk group, Piven and colleagues have found brain features that are associated with even more risk. Researchers had suspected that at some point early in life, brains grow too much in children who will go on to develop autism. Piven and colleagues scanned the brains of 106 babies with older siblings with autism at 6, 12 and 24 months of age. The researchers also included 42 low-risk infants.
At 6 and 12 months of age, the 15 babies who went on to develop autism had more growth in the outer surface of their brains, the cortex, than both the high-risk babies who didn’t develop autism and the low-risk babies, the researchers reported February 16 in Nature. A computer program that analyzed brain growth predicted whether these high-risk infants would go on to develop autism. On a second set of babies, the classification performed well, successfully calling eight out of 10 babies who would go on to develop autism by 24 months of age.
Other work by Piven and colleagues has turned up other brain differences in high-risk babies. Babies who will go on to develop autism have more cerebrospinal fluid on a certain part of the outer layer of their brains than those who don’t develop the disorder. But the results, published online March 6 in Biological Psychiatry, fell short of the predictive power of the brain overgrowth results, Piven says.
Both of these brain scan studies apply only to high-risk babies. It’s not known whether similar tests would work on children without siblings with autism. But it’s possible that these types of detailed findings can help distinguish varieties of autism, and those are distinctions that must be made before scientists can make progress, Piven says. “We call [autism] one thing, but it’s many, many different things. And until we are able to grapple with that in a more meaningful way, it’s sort of an intractable problem.”
Child and adolescent psychiatrist Robert Hendren, of the University of California, San Francisco, envisions a time when this collection of individual disorders collectively called autism are all cataloged in detail, thanks to biomarkers. “We’ll call it autism 23 or autism 14, and we’ll say, ‘We know this is the process that’s going on, and this is how we’re going to personalize our treatments for this person.’”
On the way to that goal, a big breakthrough is unlikely, says Piven. It’s not like the discovery of penicillin for bacterial infections. “You give it, and 10 days later, everything is fine. This isn’t going to be like that.” Even so, the breadth and enthusiasm of the field is promising, he says. “This whole idea of looking at early biomarkers is a new way of thinking, and we have enormous capabilities to make this reality.”
A potential sign of dark matter is looking less convincing in the wake of a new analysis.
High-energy blips of radiation known as gamma rays seem to be streaming from the center of the Milky Way in excess. Some scientists have proposed that dark matter could be the cause of that overabundance. Particles of dark matter — an invisible and unidentified substance that makes up the bulk of the matter in the cosmos — could be annihilating in the center of the galaxy, producing gamma rays (SN Online: 11/4/14).
In the new study, scientists scrutinized the latest data from the Fermi Gamma-ray Space Telescope. At the galaxy’s center, the researchers found more gamma rays than they could explain, they report in a paper posted online April 12 at arXiv.org. But, when the researchers compared the region at the center of the galaxy with control regions away from the galaxy’s center — where dark matter signals wouldn’t be expected — they also found spots with more gamma rays than expected.
“What I see in the control regions looks just like what I see in the galactic center,” says astrophysicist Andrea Albert of Los Alamos National Laboratory in New Mexico, one of the researchers who worked on the analysis. So they can’t claim that dark matter is the cause. “That’s a bummer,” she says.
Premature babies may one day continue developing in an artificial womb, new work with sheep suggests.
A fluid-filled bag that mimics the womb kept premature lambs alive and developing normally for four weeks, researchers report April 25 in Nature Communications. Lambs at a gestational age equivalent to that of a 23- or 24-week-old human fetus had normal lung and brain development after a month in the artificial womb, the researchers discovered. A similar device might be ready for use in premature human babies in three to five years if additional animal tests pan out, study coauthor Alan Flake estimates. But this is not the science fiction scenario of Brave New World, in which humans were grown entirely in tanks, says Flake, a pediatric and fetal surgeon at the Children’s Hospital of Philadelphia. “I don’t view this as something that’s going to replace mothers.” Technical and biological hurdles would prevent doctors from using an artificial womb to rescue premature babies younger than about 23 weeks, he says.
Researchers have been trying for 60 years to make an artificial womb or artificial placenta, says George Mychaliska, a pediatric and fetal surgeon at the University of Michigan Medical School in Ann Arbor. His own group has been working on an artificial placenta, or what he calls an “extra-corporeal life-support” system for premature babies for a decade. “One month is very impressive, and the data behind that is strong,” Mychaliska says, but adds that what works for lambs might not work as well for human babies.
In the United States, thousands of babies each year are born extremely premature, before 28 weeks of pregnancy. Of those born at the edge of viability, at 23 weeks of gestation, up to about 70 percent die; many of the survivors have lung and other health problems partly caused by efforts to keep them alive. Putting premature babies on ventilators to get oxygen into their bodies has mixed results, Mychaliska says. “The same treatment that is potentially saving their lives is also damaging their lungs.”
Flake and colleagues’ initial efforts to make an artificial womb — including submerging lambs in fluid in a tank — failed. Infection soon set in, killing the animals. This time, the researchers tried to mimic more closely what happens during normal pregnancy. In the new system, a lamb is surgically delivered via cesarean section and placed in a sterile bag filled with an electrolyte fluid. Because the bag is closed, the risk of infection is reduced. Tubes carrying oxygenated blood plug into the lamb’s umbilical cord, and the beating of the fetus’s heart pumps the blood at volumes and pressure comparable to what is normally delivered by the placenta. Other groups have put tubes in the neck and used an external pump to circulate the blood, which may put too much pressure on fetal hearts, causing heart failure, Flake says.
Like a real womb, the artificial one also bathes lambs in the fluid needed for proper lung development. Flake’s team prevents the lambs from taking a breath because even a little air might harm lung development. Premature babies would have to be delivered surgically and placed immediately into the fluid incubator. That would rule out about 50 percent of extremely premature babies because they are born vaginally, Flake says.
Flake’s version of the device may not be feasible for human babies for several technical reasons, too, Mychaliska says. One barrier is that the system requires a delicate fetal surgery to connect the umbilical cord to the incubator while the baby is still attached to the mother. Few hospitals are equipped to perform such an operation, he says.
Flake acknowledges that several kinks must still be worked out before the artificial womb can be tested on human babies. “We have a lot to learn in terms of its capabilities and its safety,” he says, but his group may soon be ready to begin human clinical trials. “We honestly think it could be as early as two to three years from now — and certainly within five years — that we’ll be applying it to humans.”
A fossil dinosaur embryo known as “Baby Louie” has a new name. It belongs to a newly identified species of dinosaur called Beibeilong sinensis, researchers report May 9 in Nature Communications.
In the 1980s and 1990s, farmers found thousands of fossilized dinosaur eggs in the rocks of Henan Province in China and sold them overseas. It turned out that one chunk of rock, purchased by a company that sells museum-quality fossils and rock specimens, held not only eggs but also an embryonic dinosaur skeleton. It was dubbed “Baby Louie,” after a National Geographic photographer whose images of it appeared in a cover story for the magazine. Paleontologists knew Baby Louie was some kind of oviraptorosaur, a two-legged, birdlike dinosaur. But its species was a mystery. So in 2015, Junchang Lü of the Chinese Academy of Geological Sciences in Beijing and colleagues returned to the site in China where the eggs were excavated. They analyzed fossils there and examined Baby Louie’s remains, now housed in the Henan Geological Museum. The embryo measures 38 centimeters from its snout to the start of its tail and dates to about 90 million years ago.
Based on the structure of Baby Louie’s facial bones and other anatomical features, the team declared the dinosaur a new species. In Chinese, Beibei means “baby” and long means “dragon.”
Baby Louie’s skeleton was found with six to eight similar-looking dinosaur eggs. This type of dino egg is the largest identified to date and appears to have been abundant, leading paleontologists to think that birdlike dinosaurs like Baby Louie were common in the Late Cretaceous.
Mouse sperm could win awards for resilience. Sperm freeze-dried and sent into space for months of exposure to high levels of solar radiation later produced healthy babies, researchers report online May 22 in Proceedings of the National Academy of Sciences.
If humans ever embark on long-term space flights, we’ll need a way to reproduce. One potential hurdle (beyond the logistical challenges of microgravity) is the high amount of solar radiation in space — radiation exposure is 100 times as high on the International Space Station as on Earth. Those doses might cause damaging genetic mutations in banked eggs and sperm. To test this possibility, Japanese researchers sent freeze-dried mouse sperm up to the space station, where the sperm spent nine months. When rehydrated back on Earth, the sperm showed some signs of DNA damage compared with earthly sperm.
But when the researchers used the space sperm to fertilize eggs in the lab and then injected the eggs into female mice, the mice birthed healthy pups that were able to have their own offspring. The researchers suspect that some of the initial DNA damage might have been repaired after fertilization.
If mouse sperm can survive a trip to space, perhaps human sperm can, too.
HAT-P 7b is a windy world. Stiff easterlies typically whip through the atmosphere of the distant exoplanet, but sometimes the powerful gales blow in surprisingly varied directions. Now, simulations of the planet’s magnetic field lines, illustrated here as a rainbow of scrawled marks, reveal that HAT-P 7b’s magnetic field influences the winds, even turning some into westerlies. The result, published May 15 in Nature Astronomy, could lead to a better understanding of the atmospheres of other exoplanets. Known as a “hot Jupiter,” HAT-P 7b is a gas giant that orbits its star once every 2.2 Earth days. The exoplanet, located 1,043 light-years away, is also tidally locked: One side always faces toward its star while the other faces away. That orientation pushes temperatures to about 1,900° Celsius on the planet’s dayside compared with about 900° C on the nightside. Those extreme temperature differences tend to power strong easterly winds, according to an analysis of data from the Kepler satellite. But that analysis also revealed that over time the winds are surprisingly mercurial.
The magnetic field, which may be generated by the planet’s core, is connected to the winds because of high temperatures stripping electrons from atmospheric atoms of lithium, sodium and potassium, making them positively charged. Those particles then interact with the field, creating an electromagnetic force strong enough to disrupt the stout easterly winds, writes study author Tamara Rogers, an astrophysicist at Newcastle University in England.
In the image above, blue lines track strong magnetic field lines directed one way, while those in magenta trace powerful lines in the opposite direction. Weaker parts of the field lines are shown in green and yellow. The stronger the magnetic field, the wilder the winds — with the strongest lines completely reversing the direction the winds blow, Rogers concludes.
Take a trip to a black hole with Stephen Hawking as a guide, watch glowing bioluminescent earthworms wriggle away from predators and discover the fascinating mathematics of origami — all while cuddled up in front of a laptop. That’s the promise of the online streaming service CuriosityStream, which offers hefty doses of science for viewers who prefer fact-based documentaries over reality TV, sports and the political bickering that dominate today’s television programming.
CuriosityStream, which recently celebrated its second birthday, operates much like Netflix. With plans starting at $2.99 per month, users can browse more than 1,700 commercial-free programs covering science, technology, history and the arts. The service works on computers, mobile devices and streaming players such as Roku and Apple TV. CuriosityStream aims to supplement the media diet of science-starved viewers. “When you look at television … there’s very little science on anymore,” says Steve Burns, CuriosityStream’s chief programming officer. Subscribers, he says, “crave the substance that they’ve been missing on TV for so long.”
Along with a slew of documentaries from the BBC and other public broadcasters, CuriosityStream offers more than 600 original programs that you won’t find anywhere else. One standout is David Attenborough’s Light on Earth, in which the naturalist takes viewers on an engaging survey of bioluminescent life, from flickering fireflies and luminous mushrooms to eerily glowing ocean creatures.
Another enjoyable original is Stephen Hawking’s Favorite Places, in which the famed physicist tours a black hole, exoplanet Gliese 832c, Saturn and other cosmic locales. Computer-generated imagery of the turbulent region around a black hole, for example, provides a brilliant visual background to Hawking’s explanations of relevant research. One episode is currently available, and two new ones are slated to go online later in the year.
Some shows are more engaging than others. Another original, The Hunt for Dark Matter, takes a deep dive into the technology behind the search for the invisible substance thought to pervade the universe. But the show will likely fall flat for many viewers, as its introduction lacks some of the background on the physics of dark matter that is necessary to grasp the relevance of the work.
CuriosityStream provides a wealth of options to choose from, including a variety of shorter shows, each 10 or 15 minutes long. With new programs added regularly, the service should provide enough binge-worthy fodder to keep even the most avid documentary lovers busy
On June 18, 4-year-old Bentley Thomas Koch fatally shot himself in the face. A few weeks earlier, Harmony Warfield, age 7, was shot and killed by her 2-year-old cousin. And teens Shadi Najjar and Artem Ziberov, both on the eve of graduating from high school, died in a hail of gunfire. Stories like these of kids dying from gunshot wounds are devastating, but, sadly, they aren’t an anomaly.
The most comprehensive look at fatal and nonfatal firearm injuries among children in the United States makes that abundantly clear. Every day, roughly 19 children die or are medically treated in an emergency department for gun-inflicted wounds, a study published June 19 in Pediatrics finds.
The statistics, based on data from 2002 to 2014, are stark:
Nearly 1,300 children, from birth to age 17, die from gunshot wounds each year on average and another 5,790 kids are wounded; Of the deaths, 53 percent are homicides, 38 percent are suicides and 6 percent are accidents; Boys ages 13 to 17 make up the bulk of gunshot victims; Cause of death varies by race — African-Americans are overwhelmingly more likely to die from homicide than suicide; white kids are nearly three times as likely to die from suicide as from homicide; and for American Indian and Asian-American kids, it’s 50-50. But this study doesn’t just lay out the numbers. It starts to dig deeper into the whys. And those whys can have important implications, laying the framework for policies that could ultimately lead to a drop in the numbers.
For the numbers, Katherine Fowler, a behavioral scientist at the U.S. Centers for Disease Control and Prevention, and colleagues started with data from the National Vital Statistics System and the National Electronic Injury Surveillance System.
For the whys, her team looked at cases described in the National Violent Death Reporting System, or NVDRS. That let the researchers fill in details like where an incident took place and whether it involved multiple victims — for instance, a homicide followed by suicide or a multiple victim homicide. The database also includes demographic information about the shooter, evidence of alcohol or drugs at the time of death, and whether the incident was gang-related or involved a boyfriend or girlfriend or parents. Clues to whether relationship, financial or school issues were part of the problem also come to light, as does evidence of depression, anxiety, any previous suicide attempt, treatment for mental health problems and physical health problems. Notes about playing with a gun or thinking the gun was a toy, as well as hunting accidents are also included. This tally of circumstances led Fowler and colleagues to conclude that firearm homicides of younger children, up through age 12, often involve conflict between parents, intimate partners or among family. “This highlights how children can be caught in the cross fire in cases of domestic violence and points to the importance of addressing the intersection of these forms of violence,” she says.
The results also reveal something important about child suicides involving guns. “While mental health factors are important, the findings also show that firearm suicides were also frequently related to situational life stressors and relationship problems with an intimate partner, friend or family member,” Fowler notes.
It’s these kinds of details that can help researchers and lawmakers create more effective policies to prevent such tragic deaths and injuries. It’s worked in other cases. Statistics have shown that tweaks to laws regulating the times of day teens can drive lead to injury prevention. Ditto for access to free swimming lessons when it comes to stopping accidental drownings. But similar data on gun deaths and injuries and the effectiveness of policy to prevent them are harder to come by thanks to lack of funding and political support (SN: 5/14/16, p. 16).
Even so, “we know kids are killing themselves and others with guns,” says David Hemenway, a Harvard University economist and an expert in gun research. When it comes to combatting the problem, “the circumstances help narrow down the policy.”
Fowler says the findings “highlight the need for evidence-based solutions to address this public health problem.” She’s armed with a laundry list of potential policies that could have an impact on the whys of gun violence and make a dent in the stats. School counseling programs could help kids manage their emotions and develop skills to resolve problems in relationships and with peers, she says. Along with therapy, those programs could help to reduce suicidal behavior and youth violence. Street outreach programs may also reduce gang-related violence. Parents and pediatricians talking about storing guns safely — a policy touted by the American Academy of Pediatrics, but one that has met resistance in some states — is another option.
There’s another big need, too: more data.
Despite a better picture of what’s happening when kids get a hold of guns, the data are fragmentary and incomplete, says pediatrician Eliot Nelson of the University of Vermont Children’s Hospital in Burlington. For instance, information from the NVDRS was limited to 17 states, so the numbers aren’t nationally representative. Last year, the database was expanded to 42 states and could eventually be expanded to all 50, but that will take additional funding from Congress.
The way gun injury and death data are coded in databases is another issue. Many unintentional deaths, such as when a child accidentally shoots and kills a sibling or friend, are labeled homicides, Hemenway says. Such misclassifications make it more difficult to create a policy, he says. Take, for instance, encouraging parents to lock up guns in the house. Without correctly coded data to say that younger kids are more likely to be killed by a gun at home while older kids are more likely to be killed by guns at a friend’s house, it’s harder to know how to talk to parents. For parents of young kids, the message might be to lock up their own guns; for parents of older kids, it might be to inquire about guns at the homes of their children’s friends. “We don’t always know who best to target our message to,” Nelson says.
Studies such as Fowler’s are slowly filling in the gaps. But not fast enough for kids like Bentley, Harmony, Shadi and Artem. “We want to keep growing our knowledge to prevent problems,” Nelson says. But, he says, it’s hard to do when money and politics hamper research into the problem. Gun-related deaths ranks third as the leading cause of death in 1- to 17-year-olds in the United States. “Gun death in kids is such a common problem,” Nelson says. “We can’t continue to ignore it.”