An experimental treatment for endometriosis, a painful gynecological disease that affects some 190 million people worldwide, may one day offer new hope for easing symptoms.
Monthly antibody injections reversed telltale signs of endometriosis in monkeys, researchers report February 22 in Science Translational Medicine. The antibody targets IL-8, a molecule that whips up inflammation inside the scattered, sometimes bleeding lesions that mark the disease. After neutralizing IL-8, those hallmark lesions shrink, the team found.
The new treatment is “pretty potent,” says Philippa Saunders, a reproductive scientist at the University of Edinburgh who was not involved with work. The study’s authors haven’t reported a cure, she points out, but their antibody does seem to have an impact. “I think it’s really very promising,” she says.
Many scientists think endometriosis occurs when bits of the uterine lining — the endometrium — slough off during menstruation. Instead of exiting via the vagina, they voyage in the other direction: up through the fallopian tubes. Those bits of tissue then trespass through the body, sprouting lesions where they land. They’ll glom onto the ovaries, fallopian tubes, bladder and other spots outside of the uterus and take on a life of their own, Saunders says. The lesions can grow nerve cells, form tough nubs of tissue and even bleed during menstrual cycles. They can also kick off chronic bouts of pelvic pain. If you have endometriosis, you can experience “pain when you urinate, pain when you defecate, pain when you have sex, pain when you move around,” Saunders says. People with the disease can also struggle with infertility and depression, she adds. “It’s really nasty.” Once diagnosed, patients face a dearth of treatment options — there’s no cure, only therapies to alleviate symptoms. Surgery to remove lesions can help, but symptoms often come back.
The disease affects at least 10 percent of girls, women and transgender men in their reproductive years, Saunders says. And people typically suffer for years — about eight on average — before a diagnosis. “Doctors consider menstrual pelvic pain a very common thing,” says Ayako Nishimoto-Kakiuchi, a pharmacologist at Chugai Pharmaceutical Co. Ltd. in Tokyo. Endometriosis “is underestimated in the clinic,” she says. “I strongly believe that this disease has been understudied.”
Hormonal drugs that stop ovulation and menstruation can also offer relief, says Serdar Bulun, a reproductive endocrinologist at Northwestern University Feinberg School of Medicine in Chicago not involved with the new study. But those drugs come with side effects and aren’t ideal for people trying to become pregnant. “I see these patients day in and day out,” he says. “I see how much they suffer, and I feel like we are not doing enough.”
Nishimoto-Kakiuchi’s team engineered an antibody that grabs onto the inflammatory factor IL-8, a protein that scientists have previously fingered as one potential culprit in the disease. The antibody acts like a garbage collector, Nishimoto-Kakiuchi says. It grabs IL-8, delivers it to the cell’s waste disposal machinery, and then heads out to snare more IL-8.
The team tested the antibody in cynomolgus monkeys that were surgically modified to have the disease. (Endometriosis rarely shows up spontaneously in these monkeys, the scientists discovered previously after screening more than 600 females.) The team treated 11 monkeys with the antibody injection once a month for six months. In these animals, lesions shriveled and the adhesive tissue that glues them to the body thinned out, too. Before this study, Nishimoto-Kakiuchi says, the team didn’t think such signs of endometriosis were reversible. Her company has now started a Phase I clinical trial to test the safety of therapy in humans. The treatment is one of several endometriosis therapies scientists are testing (SN: 7/19/19) . Other trials will test new hormonal drugs, robot-assisted surgery and behavioral interventions.
Doctors need new options to help people with the disease, Saunders says. “There’s a huge unmet clinical need.”
For generations of dogs, home is the radioactive remains of the Chernobyl Nuclear Power Plant.
In the first genetic analysis of these animals, scientists have discovered that dogs living in the power plant industrial area are genetically distinct from dogs living farther away.
Though the team could distinguish between dog populations, the researchers did not pinpoint radiation as the reason for any genetic differences. But future studies that build on the findings, reported March 3 in Science Advances, may help uncover how radioactive environments leave their mark on animal genomes. That could have implications for other nuclear disasters and even human space travel, says Timothy Mousseau, an evolutionary ecologist at the University of South Carolina in Columbia. “We have high hopes that what we learn from these dogs … will be of use for understanding human exposures in the future,” he says.
Since his first trip in 1999, Mousseau has stopped counting how many times he’s been to Chernobyl. “I lost track after we hit about 50 visits.”
He first encountered Chernobyl’s semi-feral dogs in 2017, on a trip with the Clean Futures Fund+, an organization that provides veterinary care to the animals. Not much is known about how local dogs survived after the nuclear accident. In 1986, an explosion at one of the power plant’s reactors kicked off a disaster that lofted vast amounts of radioactive isotopes into the air. Contamination from the plant’s radioactive cloud largely settled nearby, in a region now called the Chernobyl Exclusion Zone.
Dogs have lived in the area since the disaster, fed by Chernobyl cleanup workers and tourists. Some 250 strays were living in and around the power plant, among spent fuel-processing facilities and in the shadow of the ruined reactor. Hundreds more roam farther out in the exclusion zone, an area about the size of Yosemite National Park. During Mousseau’s visits, his team collected blood samples from these dogs for DNA analysis, which let the researchers map out the dogs’ complex family structures. “We know who’s related to who,” says Elaine Ostrander, a geneticist at the National Human Genome Research Institute in Bethesda, Md. “We know their heritage.”
The canine packs are not just a hodgepodge of wild feral dogs, she says. “There are actually families of dogs breeding, living, existing in the power plant,” she says. “Who would have imagined?”
Dogs within the exclusion zone share ancestry with German shepherds and other shepherd breeds, like many other free-breeding dogs from Eastern Europe, the team reports. And though their work revealed that dogs in the power plant area look genetically different from dogs in Chernobyl City, about 15 kilometers away, the team does not know whether radiation caused these differences or not, Ostrander says. The dogs may be genetically distinct simply because they’re living in a relatively isolated area.
The new finding is not so surprising, says Jim Smith, an environmental scientist at the University of Portsmouth in England. He was not part of the new study but has worked in this field for decades. He’s concerned that people might assume “that the radiation has something to do with it,” he says. But “there’s no evidence of that.”
Scientists have been trying to pin down how radiation exposure at Chernobyl has affected wildlife for decades (SN: 5/2/14). “We’ve been looking at the consequences for birds and rodents and bacteria and plants,” Mousseau says. His team has found animals with elevated mutation rates, shortened life spans and early-onset cataracts.
It’s not easy to tease out the effects of low-dose radiation among other factors, Smith says. “[These studies] are so hard … there’s lots of other stuff going in the natural environment.” What’s more, animals can reap some benefits when humans leave contaminated zones, he says.
How, or if, radiation damage is piling up in dogs’ genomes is something the team is looking into now, Ostrander says. Knowing the dogs’ genetic backgrounds will make it easier to spot any radiation red flags, says Bridgett vonHoldt, an evolutionary geneticist at Princeton University, who was not involved in the work.
“I feel like it’s a cliffhanger,” she says. “I want to know more.”
SpaceX’s rapidly growing fleet of Starlink internet satellites now make up half of all active satellites in Earth orbit.
On February 27, the aerospace company launched 21 new satellites to join its broadband internet Starlink fleet. That brought the total number of active Starlink satellites to 3,660, or about 50 percent of the nearly 7,300 active satellites in orbit, according to analysis by astronomer Jonathan McDowell using data from SpaceX and the U.S. Space Force. “These big low-orbit internet constellations have come from nowhere in 2019, to dominating the space environment in 2023,” says McDowell, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. “It really is a massive shift and a massive industrialization of low orbit.”
SpaceX has been launching Starlink satellites since 2019 with the goal of bringing broadband internet to remote parts of the globe. And for just as long, astronomers have been warning that the bright satellites could mess up their view of the cosmos by leaving streaks on telescope images as they glide past (SN: 3/12/20).
Even the Hubble Space Telescope, which orbits more than 500 kilometers above the Earth’s surface, is vulnerable to these satellite streaks, as well as those from other satellite constellations. From 2002 to 2021, the percentage of Hubble images affected by light from low-orbit satellites increased by about 50 percent, astronomer Sandor Kruk of the Max-Planck Institute for Extraterrestrial Physics in Garching, Germany, and colleagues report March 2 in Nature Astronomy.
The number of images partially blocked by satellites is still small, the team found, rising from nearly 3 percent of images taken between 2002 and 2005 to just over 4 percent between 2018 and 2021 for one of Hubble’s cameras. But there are already thousands more Starlink satellites now than there were in 2021.
“The fraction of [Hubble] images crossed by satellites is currently small with a negligible impact on science,” Kruk and colleagues write. “However, the number of satellites and space debris will only increase in the future.” The team predicts that by the 2030s, the probability of a satellite crossing Hubble’s field of view any time it takes an image will be between 20 and 50 percent. The sudden jump in Starlink satellites also poses a problem for space traffic, says astronomer Samantha Lawler of the University of Regina in Canada. Starlink satellites all orbit at a similar distance from Earth, just above 500 kilometers.
“Starlink is the densest patch of space that has ever existed,” Lawler says. The satellites are constantly navigating out of each other’s way to avoid collisions (SN: 2/12/09). And it’s a popular orbital altitude — Hubble is there, and so is the International Space Station and the Chinese space station. “If there is some kind of collision [between Starlinks], some kind of mishap, it could immediately affect human lives,” Lawler says.
SpaceX launches Starlink satellites roughly once per week — it launched 51 more on March 3. And they’re not the only company launching constellations of internet satellites. By the 2030s, there could be 100,000 satellites crowding low Earth orbit.
So far, there are no international regulations to curb the number of satellites a private company can launch or to limit which orbits they can occupy.
“The speed of commercial development is much faster than the speed of regulation change,” McDowell says. “There needs to be an overhaul of space traffic management and space regulation generally to cope with these massive commercial projects.”
The oldest known fossils of pollen-laden insects are of earwig-like ground-dwellers that lived in what is now Russia about 280 million years ago, researchers report. Their finding pushes back the fossil record of insects transporting pollen from one plant to another, a key aspect of modern-day pollination, by about 120 million years.
The insects — from a pollen-eating genus named Tillyardembia first described in 1937 — were typically about 1.5 centimeters long, says Alexander Khramov, a paleoentomologist at the Borissiak Paleontological Institute in Moscow. Flimsy wings probably kept the creatures mostly on the forest floor, he says, leaving them to climb trees to find and consume their pollen.
Recently, Khramov and his colleagues scrutinized 425 fossils of Tillyardembia in the institute’s collection. Six had clumps of pollen grains trapped on their heads, legs, thoraxes or abdomens, the team reports February 28 in Biology Letters. A proportion that small isn’t surprising, Khramov says, because the fossils were preserved in what started out as fine-grained sediments. The early stages of fossilization in such material would tend to wash away pollen from the insects’ remains. The pollen-laden insects had only a couple of types of pollen trapped on them, the team found, suggesting that the critters were very selective in the tree species they visited. “That sort of specialization is in line with potential pollinators,” says Michael Engel, a paleoentomologist at the University of Kansas in Lawrence who was not involved in the study. “There’s probably vast amounts of such specialization that occurred even before Tillyardembia, we just don’t have evidence of it yet.”
Further study of these fossils might reveal if Tillyardembia had evolved special pollen-trapping hairs or other such structures on their bodies or heads, says Conrad Labandeira, a paleoecologist at the National Museum of Natural History in Washington, D.C., also not part of the study. It would also be interesting, he says, to see if something about the pollen helped it stick to the insects. If the pollen grains had structures that enabled them to clump more readily, for example, then those same features may have helped them grab Velcro-like onto any hairlike structures on the insects’ bodies.
To shrink error rates in quantum computers, sometimes more is better. More qubits, that is.
The quantum bits, or qubits, that make up a quantum computer are prone to mistakes that could render a calculation useless if not corrected. To reduce that error rate, scientists aim to build a computer that can correct its own errors. Such a machine would combine the powers of multiple fallible qubits into one improved qubit, called a “logical qubit,” that can be used to make calculations (SN: 6/22/20).
Scientists now have demonstrated a key milestone in quantum error correction. Scaling up the number of qubits in a logical qubit can make it less error-prone, researchers at Google report February 22 in Nature. Future quantum computers could solve problems impossible for even the most powerful traditional computers (SN: 6/29/17). To build those mighty quantum machines, researchers agree that they’ll need to use error correction to dramatically shrink error rates. While scientists have previously demonstrated that they can detect and correct simple errors in small-scale quantum computers, error correction is still in its early stages (SN: 10/4/21).
The new advance doesn’t mean researchers are ready to build a fully error-corrected quantum computer, “however, it does demonstrate that it is indeed possible, that error correction fundamentally works,” physicist Julian Kelly of Google Quantum AI said in a news briefing February 21. Logical qubits store information redundantly in multiple physical qubits. That redundancy allows a quantum computer to check if any mistakes have cropped up and fix them on the fly. Ideally, the larger the logical qubit, the smaller the error rate should be. But if the original qubits are too faulty, adding in more of them will cause more problems than it solves.
Using Google’s Sycamore quantum chip, the researchers studied two different sizes of logical qubits, one consisting of 17 qubits and the other of 49 qubits. After making steady improvements to the performance of the original physical qubits that make up the device, the researchers tallied up the errors that still slipped through. The larger logical qubit had a lower error rate, about 2.9 percent per round of error correction, compared to the smaller logical qubit’s rate of about 3.0 percent, the researchers found. That small improvement suggests scientists are finally tiptoeing into the regime where error correction can begin to squelch errors by scaling up. “It’s a major goal to achieve,” says physicist Andreas Wallraff of ETH Zurich, who was not involved with the research.
However, the result is only on the cusp of showing that error correction improves as scientists scale up. A computer simulation of the quantum computer’s performance suggests that, if the logical qubit’s size were increased even more, its error rate would actually get worse. Additional improvement to the original faulty qubits will be needed to enable scientists to really capitalize on the benefits of error correction.
Still, milestones in quantum computation are so difficult to achieve that they’re treated like pole jumping, Wallraff says. You just aim to barely clear the bar.
Fungi may help some tree-killer beetles turn a tree’s natural defense system against itself.
The Eurasian spruce bark beetle (Ips typographus) has massacred millions of conifers in forests across Europe. Now, research suggests that fungi associated with these bark beetles are key players in the insect’s hostile takeovers. These fungi warp the chemical defenses of host trees to create an aroma that attracts beetles to burrow, researchers report February 21 in PLOS Biology.
This fungi-made perfume might explain why bark beetles tend to swarm the same tree. As climate change makes Europe’s forests more vulnerable to insect invasions, understanding this relationship could help scientists develop new countermeasures to ward off beetle attacks. Bark beetles are a type of insect found around the world that feed and breed inside trees (SN: 12/17/10). In recent years, several bark beetle species have aggressively attacked forests from North America to Australia, leaving ominous strands of dead trees in their wake.
But trees aren’t defenseless. Conifers — which include pine and fir trees — are veritable chemical weapons factories. The evergreen smell of Christmas trees and alpine forests comes from airborne varieties of these chemicals. But while they may smell delightful, these chemicals’ main purpose is to trap and poison invaders.
Or at least, that’s what they’re meant to do.
“Conifers are full of resin and other stuff that should do horrible things to insects,” says Jonathan Gershenzon, a chemical ecologist at the Max Planck Institute for Chemical Ecology in Jena, Germany. “But bark beetles don’t seem to mind at all.”
This ability of bark beetles to overcome the powerful defense system of conifers has led some scientists to wonder if fungi might be helping. Fungi break down compounds in their environment for food and protection (SN: 11/30/21). And some type of fungi — including some species in the genus Grosmannia — are always found in association with Eurasian spruce bark beetles. Gershenzon and his colleagues compared the chemicals released by spruce bark infested with Grosmannia and other fungi to the chemical profile of uninfected trees. The presence of the fungi fundamentally changed the chemical profile of spruce trees, the team found. More than half the airborne chemicals — made by fungi breaking down monoterpenes and other chemicals that are likely part of the tree defense system — were unique to infected trees after 12 days.
This is surprising because researchers had previously assumed that invading fungi hardly changed the chemical profile of trees, says Jonathan Cale, a fungal ecologist at the University of Northern British Columbia in Prince George, Canada, who was not involved with the research. Later experiments revealed that bark beetles can detect many of these fungi-made chemicals. The team tested this by attaching tiny electrodes on bark beetles’ heads and detecting electrical activity when the chemicals wafted passed their antennae. What’s more, the smell of these chemicals combined with beetle pheromones led the insects to burrow at higher rates than the smell of pheromones alone.
The study suggests that these fungi-made chemicals can help beetles tell where to feed and breed, possibly by advertising that the fungi has taken down some of the tree’s defenses. The attractive nature of the chemicals could also explain the beetle’s swarming behavior, which drives the death of healthy adult trees.
But while the fungi aroma might doom trees, it could also lead to the beetles’ demise. Beetle traps in Europe currently use only beetle pheromones to attract their victims. Combining pheromones with fungi-derived chemicals might be the secret to entice more beetles into traps, making them more effective.
The results present “an exciting direction for developing new tools to manage destructive bark beetle outbreaks” for other beetle species as well, Cale says. In North America, mild winters and drought have put conifer forests at greater risk from mountain pine beetle (Dendroctonus pendersoae) attacks. Finding and using fungi-derived chemicals might be one way to fend off the worst of the bark beetle invasions in years to come.
In August 2021 on a lonely crater floor, the newest Mars rover dug into one of its first rocks.
The percussive drill attached to the arm of the Perseverance rover scraped the dust and top several millimeters off a rocky outcrop in a 5-centimeter-wide circle. From just above, one of the rover’s cameras captured what looked like broken shards wedged against one another. The presence of interlocking crystal textures became obvious. Those textures were not what most of the scientists who had spent years preparing for the mission expected. Then the scientists watched on a video conference as the rover’s two spectrometers revealed the chemistry of those meshed textures. The visible shapes along with the chemical compositions showed that this rock, dubbed Rochette, was volcanic in origin. It was not made up of the layers of clay and silt that would be found at a former lake bed.
Nicknamed Percy, the rover arrived at the Jezero crater two years ago, on February 18, 2021, with its sidekick helicopter, Ingenuity. The most complex spacecraft to explore the Martian surface, Percy builds on the work of the Curiosity rover, which has been on Mars since 2012, the twin Spirit and Opportunity rovers, the Sojourner rover and other landers.
But Perseverance’s main purpose is different. While the earlier rovers focused on Martian geology and understanding the planet’s environment, Percy is looking for signs of past life. Jezero was picked for the Mars 2020 mission because it appears from orbit to be a former lake environment where microbes could have thrived, and its large delta would likely preserve any signs of them. Drilling, scraping and collecting pieces of the Red Planet, the rover is using its seven science instruments to analyze the bits for any hint of ancient life. It’s also collecting samples to return to Earth. Since landing, “we’ve been able to start putting together the story of what has happened in Jezero, and it’s pretty complex,” says Briony Horgan, a planetary scientist at Purdue University in West Lafayette, Ind., who helps plan Percy’s day-to-day and long-term operations.
Volcanic rock is just one of the surprises the rover has uncovered. Hundreds of researchers scouring the data Perseverance has sent back so far now have some clues to how the crater has evolved over time. This basin has witnessed flowing lava, at least one lake that lasted perhaps tens of thousands of years, running rivers that created a mud-and-sand delta and heavy flooding that brought rocks from faraway locales.
Jezero has a more dynamic past than scientists had anticipated. That volatility has slowed the search for sedimentary rocks, but it has also pointed to new alcoves where ancient life could have taken hold.
Perseverance has turned up carbon-bearing materials — the basis of life on Earth — in every sample it has abraded, Horgan says. “We’re seeing that everywhere.” And the rover still has much more to explore. Perseverance finds unexpected rocks Jezero is a shallow impact crater about 45 kilometers in diameter just north of the planet’s equator. The crater formed sometime between 3.7 billion and 4.1 billion years ago, in the solar system’s first billion years. It sits in an older and much larger impact basin known as Isidis. At Jezero’s western curve, an etched ancient riverbed gives way to a dried-out, fan-shaped delta on the crater floor.
That delta “is like this flashing signpost beautifully visible from orbit that tells us there was a standing body of water here,” says astrobiologist Ken Williford of Blue Marble Space Institute of Science in Seattle.
Perseverance landed on the crater floor about two kilometers from the front of the delta. Scientists thought they’d find compacted layers of soil and sand there, at the base of what they dubbed Lake Jezero. But the landscape immediately looked different than expected, says planetary geologist Kathryn Stack Morgan of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Stack Morgan is deputy project scientist for Perseverance. For the first several months after the landing, the Mars 2020 mission team tested the rover’s movements and instruments, slowly, carefully. But from the first real science drilling near the landing location, researchers back on Earth realized what they had found. The texture of the rock, Stack Morgan says, was “a textbook igneous volcanic rock texture.” It looked like volcanic lava flows.
Over the next six months, several more rocks on the crater floor revealed igneous texture. Some of the most exciting rocks, including Rochette, showed olivine crystals throughout. “The crystal fabric was obviously cooled from a melt, not transported grains,” as would be the case if it were a sedimentary sample, says Abigail Allwood of the Jet Propulsion Lab. She leads the rover’s PIXL instrument, which uses an X-ray beam to identify each sample’s composition.
Mission scientists now think the crater floor is filled with igneous rocks from two separate events — both after the crater was created, so more recently than the 3.7 billion to 4.1 billion years ago time frame. In one, magma from deep within the planet pushed toward the surface, cooled and solidified, and was later exposed by erosion. In the other, smaller lava flows streamed at the surface. Sometime after these events, water flowed from the nearby highlands into the crater to form a lake tens of meters deep and lasting tens of thousands of years at least, according to some team members. Percy’s instruments have revealed the ways that water altered the igneous rocks: For example, scientists have found sulfates and other minerals that require water to form, and they’ve seen empty pits within the rocks’ cracks, where water would have washed away material. As that water flowed down the rivers into the lake, it deposited silt and mud, forming the delta. Flooding delivered 1.5-meter-wide boulders from that distant terrain. All of these events preceded the drying of the lake, which might have happened about 3 billion years ago.
Core samples, which Perseverance is collecting and storing on board for eventual return to Earth, could provide dates for when the igneous rocks formed, as well as when the Martian surface became parched. During the time between, Lake Jezero and other wet environments may have been stable enough for microbial life to start and survive.
“Nailing down the geologic time scale is of critical importance for us understanding Mars as a habitable world,” Stack Morgan says. “And we can’t do that without samples to date.”
About a year after landing on Mars, Perseverance rolled several kilometers across the crater floor to the delta front — where it encountered a very different geology.
The delta might hold signs of ancient life Deltas mark standing, lasting bodies of water — stable locales that could support life. Plus, as a delta grows over time, it traps and preserves organic matter.
Sand and silt deposited where a river hits a lake get layered into sedimentary material, building up a fan-shaped delta. “If you have any biological material that is trapped between that sediment, it gets buried very quickly,” says Mars geologist Eva Scheller of MIT, a researcher with the Percy team. “It creates this environment that is very, very good for preserving the organic matter.”
While exploring the delta front between April 2022 and December 2022, Perseverance found some of the sedimentary rocks it was after. Several of the rover’s instruments zoomed in on the textures and shapes of the rocks, while other instruments collected detailed spectral information, revealing the elements present in those rocks. By combining the data, researchers can piece together what the rocks are made of and what processes might have changed them over the eons. It’s this chemistry that could reveal signs of ancient Martian life — biosignatures. Scientists are still in the early stages of these analyses.
There won’t be one clear-cut sign of life, Allwood says. Instead, the rover would more likely reveal “an assemblage of characteristics,” with evidence slowly building that life once existed there.
Chemical characteristics suggestive of life are most likely to hide in sedimentary rocks, like those Perseverance has studied at the delta front. Especially interesting are rocks with extremely fine-grained mud. Such mud sediments, Horgan says, are where — in deltas on Earth, at least — organic matter is concentrated. So far, though, the rover hasn’t found those muddy materials.
But the sedimentary rocks studied have revealed carbonates, sulfates and unexpected salts — all materials indicating interaction with water and important for life as we know it. Percy has found carbon-based matter in every rock it has abraded, Horgan says.
“We’ve had some really interesting results that we’re pretty excited to share with the community,” Horgan says about the exploration of the delta front. Some of those details may be revealed in March at the Lunar and Planetary Science Conference.
Perseverance leaves samples for a future mission As of early February, Perseverance has collected 18 samples, including bits of Mars debris and cores from rocks, and stored them on board in sealed capsules for eventual return to Earth. The samples come from the crater floor, delta front rocks and even the thin Martian atmosphere.
In the final weeks of 2022 and the first weeks of 2023, the rover dropped — or rather, carefully set down — half of the collected samples, as well as a tube that would reveal whether samples contained any earthly contaminants. These captured pieces of Mars are now sitting at the front of the delta, at a predetermined spot called the Three Forks region. If Perseverance isn’t functioning well enough to hand over its onboard samples when a future sample-return spacecraft arrives, that mission will collect these samples from the drop site to bring back to Earth.
Researchers are currently working on designs for a joint Mars mission between NASA and the European Space Agency that could retrieve the samples. Launching in the late 2020s, it would land near the Perseverance rover. Percy would transfer the samples to a small rocket to be launched from Mars and returned to Earth in the 2030s. Lab tests could then confirm what Perseverance is already uncovering and discover much more.
Meanwhile, Percy is climbing up the delta to explore its top, where muddy sedimentary rocks may still be found. The next target is the edge of the once-lake, where shallow water long ago stood. This is the site Williford is most excited about. Much of what we know about the history of how life has evolved on Earth comes from environments with shallow water, he says. “That’s where really rich, underwater ecosystems start to form,” he says. “There’s so much going on there chemically.”
Inspired by how ants move through narrow spaces by shortening their legs, scientists have built a robot that draws in its limbs to navigate constricted passages.
The robot was able to hunch down and walk quickly through passages that were narrower and shorter than itself, researchers report January 20 in Advanced Intelligent Systems. It could also climb over steps and move on grass, loose rock, mulch and crushed granite.
Such generality and adaptability are the main challenges of legged robot locomotion, says robotics engineer Feifei Qian, who was not involved in the study. Some robots have specialized limbs to move over a particular terrain, but they cannot squeeze into small spaces (SN: 1/16/19). “A design that can adapt to a variety of environments with varying scales or stiffness is a lot more challenging, as trade-offs between the different environments need to be considered,” says Qian, of the University of Southern California in Los Angeles.
For inspiration, researchers in the new study turned to ants. “Insects are really a neat inspiration for designing robot systems that have minimal actuation but can perform a multitude of locomotion behaviors,” says Nick Gravish, a roboticist at the University of California, San Diego (SN: 8/16/18). Ants adapt their posture to crawl through tiny spaces. And they aren’t perturbed by uneven terrain or small obstacles. For example, their legs collapse a bit when they hit an object, Gravish says, and the ants continue to move forward quickly.
Gravish and colleagues built a short, stocky robot — about 30 centimeters wide and 20 centimeters long — with four wavy, telescoping limbs. Each limb consists of six nested concentric tubes that can draw into each other. What’s more, the limbs do not need to be actively powered or adjusted to change their overall length. Instead, springs that connect the leg segments automatically allow the legs to contract when the robot navigates a narrow space and stretch back out in an open space. The goal was to build mechanically intelligent structures rather than algorithmically intelligent robots.
“It’s likely faster than active control, [which] requires the robot to first sense the contact with the environment, compute the suitable action and then send the command to its motors,” Qian says, about these legs. Removing the sensing and computing components can also make the robots small, cheap and less power hungry.
The robot could modify its body width and height to achieve a larger range of body sizes than other similar robots. The leg segments contracted into themselves to let the robot wiggle through small tunnels and sprawled out when under low ceilings. This adaptability let the robot squeeze into spaces as small as 72 percent its full width and 68 percent its full height. Next, the researchers plan to actively control the stiffness of the springs that connect the leg segments to tune the motion to terrain type without consuming too much power. “That way, you can keep your leg long when you are moving on open ground or over tall objects, but then collapse down to the smallest possible shape in confined spaces,” Gravish says. Such small-scale, minimal robots are easy to produce and can be quickly tweaked to explore complex environments. However, despite being able to walk across different terrains, these robots are, for now, too fragile for search-and-rescue, exploration or biological monitoring, Gravish says.
The new robot takes a step closer to those goals, but getting there will take more than just robotics, Qian says. “To actually achieve these applications would require an integration of design, control, sensing, planning and hardware advancement.”
But that’s not Gravish’s interest. Instead, he wants to connect these experiments back to what was observed in the ants originally and use the robots to ask more questions about the rules of locomotion in nature (SN: 1/16/20).
“I really would like to understand how small insects are able to move so rapidly across certain unpredictable terrain,” he says. “What is special about their limbs that enables them to move so quickly?”
The dwarf planet Quaoar has a ring that is too big for its metaphorical fingers. While all other rings in the solar system lie within or near a mathematically determined distance of their parent bodies, Quaoar’s ring is much farther out.
“For Quaoar, for the ring to be outside this limit is very, very strange,” says astronomer Bruno Morgado of the Federal University of Rio de Janeiro. The finding may force a rethink of the rules governing planetary rings, Morgado and colleagues say in a study published February 8 in Nature. Quaoar is an icy body about half the size of Pluto that’s located in the Kuiper Belt at the solar system’s edge (SN: 8/23/22). At such a great distance from Earth, it’s hard to get a clear picture of the world.
So Morgado and colleagues watched Quaoar block the light from a distant star, a phenomenon called a stellar occultation. The timing of the star winking in and out of view can reveal details about Quaoar, like its size and whether it has an atmosphere.
The researchers took data from occultations from 2018 to 2020, observed from all over the world, including Namibia, Australia and Grenada, as well as space. There was no sign that Quaoar had an atmosphere. But surprisingly, there was a ring. The finding makes Quaoar just the third dwarf planet or asteroid in the solar system known to have a ring, after the asteroid Chariklo and the dwarf planet Haumea (SN: 3/26/14; SN: 10/11/17).
Even more surprisingly, “the ring is not where we expect,” Morgado says. Known rings around other objects lie within or near what’s called the Roche limit, an invisible line where the gravitational force of the main body peters out. Inside the limit, that force can rip a moon to shreds, turning it into a ring. Outside, the gravity between smaller particles is stronger than that from the main body, and rings will coalesce into one or several moons.
“We always think of [the Roche limit] as straightforward,” Morgado says. “One side is a moon forming, the other side is a ring stable. And now this limit is not a limit.”
For Quaoar’s far-out ring, there are a few possible explanations, Morgado says. Maybe the observers caught the ring at just the right moment, right before it turns into a moon. But that lucky timing seems unlikely, he notes.
Maybe Quaoar’s known moon, Weywot, or some other unseen moon contributes gravity that holds the ring stable somehow. Or maybe the ring’s particles are colliding in such a way that they avoid sticking together and clumping into moons.
The particles would have to be particularly bouncy for that to work, “like a ring of those bouncy balls from toy stores,” says planetary scientist David Jewitt of UCLA, who was not involved in the new work.
The observation is solid, says Jewitt, who helped discover the first objects in the Kuiper Belt in the 1990s. But there’s no way to know yet which of the explanations is correct, if any, in part because there are no theoretical predictions for such far-out rings to compare with Quaoar’s situation.
That’s par for the course when it comes to the Kuiper Belt. “Everything in the Kuiper Belt, basically, has been discovered, not predicted,” Jewitt says. “It’s the opposite of the classical model of science where people predict things and then confirm or reject them. People discover stuff by surprise, and everyone scrambles to explain it.”
More observations of Quaoar, or more discoveries of seemingly misplaced rings elsewhere in the solar system, could help reveal what’s going on.
“I have no doubt that in the near future a lot of people will start working with Quaoar to try to get this answer,” Morgado says.
Scientists have finally figured out how those arches, loops and whorls formed on your fingertips.
While in the womb, fingerprint-defining ridges expand outward in waves starting from three different points on each fingertip. The raised skin arises in a striped pattern thanks to interactions between three molecules that follow what’s known as a Turing pattern, researchers report February 9 in Cell. How those ridges spread from their starting sites — and merge — determines the overarching fingerprint shape. Fingerprints are unique and last for a lifetime. They’ve been used to identify individuals since the 1800s. Several theories have been put forth to explain how fingerprints form, including spontaneous skin folding, molecular signaling and the idea that ridge pattern may follow blood vessel arrangements.
Scientists knew that the ridges that characterize fingerprints begin to form as downward growths into the skin, like trenches. Over the few weeks that follow, the quickly multiplying cells in the trenches start growing upward, resulting in thickened bands of skin.
Since budding fingerprint ridges and developing hair follicles have similar downward structures, researchers in the new study compared cells from the two locations. The team found that both sites share some types of signaling molecules — messengers that transfer information between cells — including three known as WNT, EDAR and BMP. Further experiments revealed that WNT tells cells to multiply, forming ridges in the skin, and to produce EDAR, which in turn further boosts WNT activity. BMP thwarts these actions.
To examine how these signaling molecules might interact to form patterns, the team adjusted the molecules’ levels in mice. Mice don’t have fingerprints, but their toes have striped ridges in the skin comparable to human prints. “We turn a dial — or molecule — up and down, and we see the way the pattern changes,” says developmental biologist Denis Headon of the University of Edinburgh.
Increasing EDAR resulted in thicker, more spaced-out ridges, while decreasing it led to spots rather than stripes. The opposite occurred with BMP, since it hinders EDAR production.
That switch between stripes and spots is a signature change seen in systems governed by Turing reaction-diffusion, Headon says. This mathematical theory, proposed in the 1950s by British mathematician Alan Turing, describes how chemicals interact and spread to create patterns seen in nature (SN: 7/2/10). Though, when tested, it explains only some patterns (SN: 1/21/14).
Mouse digits, however, are too tiny to give rise to the elaborate shapes seen in human fingerprints. So, the researchers used computer models to simulate a Turing pattern spreading from the three previously known ridge initiation sites on the fingertip: the center of the finger pad, under the nail and at the joint’s crease nearest the fingertip. By altering the relative timing, location and angle of these starting points, the team could create each of the three most common fingerprint patterns — arches, loops and whorls — and even rarer ones. Arches, for instance, can form when finger pad ridges get a slow start, allowing ridges originating from the crease and under the nail to occupy more space.
“It’s a very well-done study,” says developmental and stem cell biologist Sarah Millar, director of the Black Family Stem Cell Institute at the Icahn School of Medicine at Mount Sinai in New York City.
Controlled competition between molecules also determines hair follicle distribution, says Millar, who was not involved in the work. The new study, she says, “shows that the formation of fingerprints follows along some basic themes that have already been worked out for other types of patterns that we see in the skin.”
Millar notes that people with gene mutations that affect WNT and EDAR have skin abnormalities. “The idea that those molecules might be involved in fingerprint formation was floating around,” she says.
Overall, Headon says, the team aims to aid formation of skin structures, like sweat glands, when they’re not developing properly in the womb, and maybe even after birth.
“What we want to do, in broader terms, is understand how the skin matures.”