When the 2017 Great American Eclipse hit totality and the sky went dark, bees noticed.
Microphones in flower patches at 11 sites in the path of the eclipse picked up the buzzing sounds of bees flying among blooms before and after totality. But those sounds were noticeably absent during the full solar blackout, a new study finds.
Dimming light and some summer cooling during the onset of the eclipse didn’t appear to make a difference to the bees. But the deeper darkness of totality did, researchers report October 10 in the Annals of the Entomological Society of America. At the time of totality, the change in buzzing was abrupt, says study coauthor and ecologist Candace Galen of the University of Missouri in Columbia. The recordings come from citizen scientists, mostly school classes, setting out small microphones at two spots in Oregon, one in Idaho and eight in Missouri. Often when bees went silent at the peak of the eclipse, Galen says, “you can hear the people in the background going ‘ooo,’ ‘ahh’ or clapping.” There’s no entirely reliable way (yet) of telling what kinds of bees were doing the buzzing, based only on their sounds, Galen says. She estimates that the Missouri sites had a lot of bumblebees, while the western sites had more of the tinier, temperature-fussy Megachile bees. More western samples, with the fussier bees, might have let researchers see an effect on the insects of temperatures dropping by at least 10 degrees Celsius during the eclipse. The temperature plunge in the Missouri summer just “made things feel a little more comfortable,” Galen says.
This study of buzz recordings gives the first formal data published on bees during a solar eclipse, as far as Galen knows. “Insects are remarkably neglected,” she says. “Everybody wants to know what their dog and cat are doing during the eclipse, but they don’t think about the flea.”
Vinita Surukan knew the mosquitoes were trouble. They attacked her in swarms, biting through her clothes as she worked to collect rubber tree sap near her village in Sabah, the northern state of Malaysia. The 30-year-old woman described the situation as nearly unbearable. But she needed the job.
There were few alternatives in her village surrounded by fragments of forest reserves and larger swaths of farms, oil palm plantations and rubber tree estates. So she endured until a week of high fever and vomiting forced her to stop. The night of July 23, Surukan was trying to sleep off her fever when the clinic she visited earlier in the day called with results: Her blood was teeming with malaria parasites, about a million in each drop. Her family rushed her to the town hospital where she received intravenous antimalarial drugs before being transferred to a city hospital equipped to treat severe malaria. The drugs cleared most of the parasites, and the lucky woman was smiling by morning.
Malaria has terrorized humans for millennia, its fevers carved into our earliest writing on ancient Sumerian clay tablets from Mesopotamia. In 2016, four species of human malaria parasites, which are spread by mosquito from person to person, infected more than 210 million people worldwide, killing almost 450,000. The deadliest species, Plasmodium falciparum, causes most of the infections.
But Surukan’s malaria was different. Hers was not a human malaria parasite. She had P. knowlesi, which infects several monkey species. The same parasite had recently infected two other people in Surukan’s village — a man who hunts in the forest and a teenager. Surukan suspects that her parasites came from the monkeys that live in the forest bordering the rubber tree estate where she worked. Some villagers quit working there after hearing of Surukan’s illness.
Monkey malaria, discovered in the early 1900s, became a public health concern only in the last 15 years. Before that, scientists thought it was extremely rare for monkey malaria parasites, of which there are at least 30 species, to infect humans. Yet since 2008, Malaysia has reported more than 15,000 cases of P. knowlesi infection and about 50 deaths. Infections in 2017 alone hit 3,600. People infected with monkey malaria are found across Southeast Asia near forests with wild monkeys. In 2017, another species of monkey malaria parasite, P. cynomolgi, was found in five Malaysians and 13 Cambodians. And by 2018, at least 19 travelers to the region, mostly Europeans, had brought monkey malaria back to their home countries.
The rise of monkey malaria in Malaysia is closely tied to rapid deforestation, says Kimberly Fornace, an epidemiologist at the London School of Hygiene and Tropical Medicine. After testing blood samples of nearly 2,000 people from areas in Sabah with various levels of deforestation, she found that people staying or working near cut forests were more likely than people living away from forests to have P. knowlesi infections, she and colleagues reported in June in PLOS Neglected Tropical Diseases. Stepping over felled trees, humans move closer to the monkeys and the parasite-carrying mosquitoes that thrive in cleared forests. It’s out there There’s no feasible way to treat wild monkeys for an infection that they show no signs of. “That’s the problem with P. knowlesi,” says Singapore-based infectious disease specialist Fe Espino, a director of the Asia Pacific Malaria Elimination Network.
In 2015, the World Health Organization set a goal for 2030: to stop malaria transmission in at least 35 of the 91 malaria-endemic countries. WHO targets the four human malaria parasites: P. falciparum, P. vivax, P. malariae and P. ovale. Monkey malaria is excluded from the campaign because the agency regards it as an animal disease that has not been shown to transmit among humans.
But as countries reduce human malaria, they will eventually have to deal with monkey malaria, Espino says, echoing an opinion widely shared by monkey malaria scientists.
“Something nasty” could emerge from the pool of malaria parasites in monkeys, says malariologist Richard Culleton of Nagasaki University in Japan. Culleton studies the genetics of human and monkey malaria. Malaria parasites can mutate quickly — possibly into new types that can more easily infect humans (SN: 9/6/14, p. 9). To Culleton, the monkey malaria reservoir “is like a black box. Things come flying out of it occasionally and you don’t know what’s coming next.” Malaysia is very close to reaching the WHO target of human malaria elimination. In 2017, only 85 people there were infected with human malaria. But that success feels hollow as monkey malaria gains a foothold. And while monkey malaria has swelled into a public health threat only in Malaysia, the same could happen in other parts of Southeast Asia and beyond. Even in southeastern Brazil, where human malaria was eliminated 50 years ago, the P. simium malaria parasite that resides in howler monkeys caused outbreaks in humans in 2015 and 2016.
From tool to threat In the late 1800s, scientists discovered the Plasmodium parasite and its Anopheles mosquito carriers. Humans retaliated by draining marshes to stop mosquito breeding and spraying insecticides over whole communities. Governments and militaries pursued antimalarial drugs as the disease claimed countless soldiers during the two World Wars.
Scientists soon found malaria parasites in birds, rodents, apes and monkeys. To the researchers, the parasites found in monkeys were a tool for testing antimalarial drugs, not a threat. An accident, however, showed otherwise. In 1960, biologist Don Eyles had been studying the monkey malaria P. cynomolgi at a National Institutes of Health lab in Memphis, Tenn., when he fell ill with malarial fevers. He had been infected with the parasites found in his research monkeys. His team quickly confirmed that the malaria parasites in his monkeys could be carried by mosquitoes to humans. Suddenly, monkey malaria was not just a tool; it was an animal disease that could naturally infect humans. The news shook WHO, McWilson Warren said in a 2005 interview recorded by the Office of NIH History. Warren, a parasitologist, had been Eyles’ colleague. Five years before Eyles became infected, WHO had launched the Global Malaria Eradication Programme. Banking on insecticides and antimalarial drugs, the agency had aimed to end all malaria transmissions outside of Africa. A monkey malaria that easily infects humans would sink the program because there would be no way to treat all the monkeys.
A team of American scientists, including Eyles and Warren, traveled to Malaysia — then the Federation of Malaya — where the P. cynomolgi parasites that infected Eyles came from. Funded by NIH, the scientists worked with colleagues from the Institute of Medical Research in Kuala Lumpur, established in 1900 by the British to study tropical diseases.
From 1961 to 1965, the researchers discovered five new species of monkey malaria parasites and about two dozen mosquito species that carry the parasites. But the researchers did not find any human infections. Then, in 1965, an American surveyor became infected with P. knowlesi after spending several nights camping on a hill about 160 kilometers inland from Kuala Lumpur.
Warren surveyed the forested area where the infected American had camped. The hill sat beside a meandering river. Monkeys and gibbons, a type of ape, lived on the hill and in adjacent forests. The closest house was about two kilometers away. Warren sampled the blood of four monkeys and more than 1,100 villagers around the hill; he collected mosquitoes too.
He found P. knowlesi parasites in the monkeys, but none among the villagers. Only one mosquito species, A. maculatus, appeared capable of transmitting malaria between monkeys and humans, but Warren deemed its numbers too low to matter. He concluded that monkey malaria stayed in the forests and rarely ever spilled into humans.
With those results, NIH ended the monkey malaria project, Warren said, and the Institute of Medical Research in Kuala Lumpur returned to its primary focus: human malaria, dengue and other mosquito-borne diseases. Monkey malaria was struck off the list of public health concerns.
Wake-up call P. knowlesi landed back in the spotlight in 2004, with a report in the Lancet by malariologist Balbir Singh and his team. The group had found 120 people infected over two years in southern Malaysian Borneo. The patients were mostly indigenous people who lived near forests. Clinicians initially had checked the patients’ blood samples under microscopes — the standard test — and diagnosed the parasites as human malaria. But when Singh, of Universiti Malaysia Sarawak, applied molecular tools that identify parasite species by their DNA, he revealed that all the samples were P. knowlesi. Monkey malaria was breaking out of the diminishing forests.
By 2018, P. knowlesi had infected humans in all Southeast Asian countries except for East Timor. Singapore, declared malaria free in 1982, reported that six soldiers were infected with P. knowlesi from wild monkeys in a forest reserve. The parasite also turned up in almost 380 out of 3,700 visitors to health clinics in North Sumatra, Indonesia, an area that is close to being deemed free of human malaria. Many scientists now recognize P. knowlesi as the fifth malaria parasite species that can naturally infect humans. It is also the only one to multiply in the blood every 24 hours, and it can kill if treatment is delayed. People pick up P. knowlesi parasites from long-tailed macaques, pig-tailed macaques and Mitred leaf monkeys. These monkeys range across Southeast Asia. So far, malaria parasites have been found in monkeys near or in forests, but rarely in monkeys in towns or cities.
Scientists propose several reasons for the recent rise in monkey malaria infections, but two stand out: improvement in malaria detection and forest loss.
Malaysia, for instance, finds more monkey malaria cases than other Southeast Asian countries because it added molecular diagnostic tools in 2009. Other countries use only microscopy for detection, says Rose Nani Mudin, who heads the vectorborne disease sector at Malaysia’s Ministry of Health. Since 2008, annual monkey malaria cases in Malaysia have climbed tenfold, even as human malaria cases have plummeted. “Maybe there is a genuine increase in [monkey malaria] cases. But with strengthening of surveillance, of course you would detect more cases,” she says.
Data collected by Malaysia’s malaria surveillance system have also revealed strong links between infection risk and deforestation. Fornace, the epidemiologist, examined the underlying drivers of monkey malaria in Surukan’s home state of Sabah. Fornace mapped monkey malaria cases in 405 villages, based on patient records from 2008 to 2012. Satellite data showed changes in forested areas around those villages. The villages most likely to report monkey malaria infections were those that had cut more than 8 percent of their surrounding forests within the last five years, she and colleagues reported in 2016 in Emerging Infectious Diseases. Fornace’s team went into the field for a follow-up study, published in June in PLOS Neglected Tropical Diseases. The team collected blood samples from almost 2,000 people in two areas in Sabah and checked for current and past malaria infection. People who farmed or worked in plantations near forests had at least a 63 percent higher risk of P. knowlesi infection, and — like in the 2016 study — forests and cleared areas escalated risk of infection.
“It feels almost like P. knowlesi follows deforestation,” Fornace says. Several years after a forest is cut back, nearby communities “get a peak of P. knowlesi.”
Today, the hill where the American surveyor camped in 1965 is a small island in a sea of oil palm estates. From 2000 to 2012, Malaysia cleared a total amount of forest equaling 14.4 percent of its land area, more than any other country, according to a study published in 2013 in Science. A study in 2013 in PLOS ONE used satellite images to show that in 2009, only one-fifth of Malaysian Borneo was intact forest. Almost one-fourth of all forest there had been logged, regrown and logged many times over.
Since 2008, oil palm acreage in Malaysian Borneo has increased from 2.08 million hectares to 3.1 million, according to the Malaysian Palm Oil Board. In Malaysia, the four states hit hardest by deforestation — Sabah, Sarawak, Kelantan and Pahang — report 95 percent of the country’s P. knowlesi cases. Fornace thinks deforestation and the ecological changes that come with it are the main drivers of monkey malaria’s rise in Malaysia. She has seen long-tailed macaques spend more time in farms and near houses after their home forests were being logged. Macaques thrive near human communities where food is abundant and predators stay out. Parasite-carrying mosquitoes breed in puddles made by farming and logging vehicles.
Where monkeys go, mosquitoes follow. Indra Vythilingam, a parasitologist at University of Malaya in Kuala Lumpur, studied human malaria in indigenous communities in the early 1990s. Back then, she rarely found A. cracens, the mosquito species that carries monkey malaria in Peninsular Malaysia. But in 2007, that species made up over 60 percent of mosquitoes collected at forest edges and in orchards, she reported in 2012 in Malaria Journal. “It’s so much easier to find them” now, she says.
As Fornace points out, “P. knowlesi is a really good example of how a disease can emerge and change” as land use changes. She recommends that when big projects are evaluated for their impact on the economy and the environment, human health should be considered as well.
What to expect While P. knowlesi cases are climbing in Malaysia, scientists have found no evidence that P. knowlesi transmits directly from human to mosquito to human (though many suspect it happens, albeit inefficiently). Following a review by experts in 2017, WHO continues to exclude P. knowlesi from its malaria elimination efforts. Rabindra Abeyasinghe, a tropical medicine specialist who coordinates WHO malaria control in the western Pacific region, says the agency will reconsider P. knowlesi as human malaria if there is new evidence to show that the parasite transmits within human communities.
In Malaysia last year, only one person died from human malaria, but P. knowlesi killed 11. “We don’t want that to happen, which is why [P. knowlesi] is our priority even though it is not in the elimination program,” says Rose Nani Mudin from the country’s Ministry of Health.
Unable to do much with the monkeys in the trees, Malaysian health officers focus on the people most likely to be infected with P. knowlesi. Programs raise awareness of monkey malaria and aim to reduce mosquitoes around houses. New mosquito-control methods are needed, however, because conventional methods like insecticide-treated bed nets do not work for monkey malaria mosquitoes that bite outdoors around dusk.
Fighting malaria is like playing chess against an opponent that counters every good move we make, says Culleton in Japan. Malaria parasites can mutate quickly and “go away and hide in places and come out again.” Against malaria, he says, “we can never let our guard down.”
This article appears in the November 10, 2018 Science News with the headline, “The Next Malaria Menace: Deforestation brings monkeys and humans close enough to share an age-old disease.”
Editor’s note: This story was updated on November 6, 2018 to correct the WHO’s position on monkey malaria. The agency excludes monkey malaria parasites from its malaria eradication goals, not because those particular parasites rarely infect humans, but because the parasites have not been shown to transmit among humans.
The United States is poised to take a powerful economic hit from climate change over the next century. Heat waves, wildfires, extreme weather events and rising sea levels could cost the country hundreds of billions of dollars in lost labor, reduced crop yields, health problems and crumbling infrastructure.
A report authored by hundreds of U.S. climate scientists from 13 federal agencies presents a stark picture of the country’s fate due to climate change. The Fourth National Climate Assessment, released November 23, predicts the U.S. economy will shrink by as much as 10 percent by the end of the century if global warming continues apace. A separate report released November 27 by the United Nations Environment Programme reveals that in 2017, global emissions of carbon dioxide — a major driver of warming — rose for the first time in three years. That suggests that the nations that promised to curb emissions as part of the historic 2015 Paris agreement are falling short (SN: 1/9/16, p. 6).
It’s unclear what effect, if any, the reports will have on the U.S. government’s strategy on dealing with climate change and its consequences. President Donald Trump has previously announced he would withdraw the United States from the Paris agreement (SN Online: 6/1/17). And on November 26, Trump told reporters that he had read “some of” his scientists’ report. “It’s fine,” he said. But when it comes to the dire predictions of economic losses, he added, “I don’t believe it.”
The National Climate Assessments are mandated by Congress and produced every four years, focusing on the risks of climate change specifically to the United States. What’s different about the new report compared with previous editions is its precision about the risks to different parts of the U.S. economy, putting a price tag on the potential losses in agriculture, trade and energy generation.
To put a dollar value on bad air quality or worsening heat waves, for instance, scientists try to assess the measurable impacts of those issues — for example, the number of days of work or school missed, or the number of doctors’ visits triggered (SN Online: 10/14/18). The more-than-1,600-page report includes detailed examinations of the effects of climate change on the country’s different regions. People living in the northeastern United States, for example, will be among the hardest hit by deaths due to poor air quality and temperature extremes by the end of the century. Labor losses in the southeastern United States are the highest of all regions, as are projected damages to roads and bridges, the report found.
Meanwhile, the Midwest will see the highest increase in premature deaths from increased amounts of ozone. And the Southwest, which includes California in these analyses, will suffer from extreme heat, drought and an increase in future cases of the mosquito-borne West Nile virus.
The report estimates that cumulatively the country will spend $23 billion responding to wildfires by the end of the century, even if greenhouse gas emissions are modestly reduced. The Southwest will bear the brunt of that impact, spending $13 billion dollars.
The report also details the many ways in which climate change is already hurting the country economically. For example, three storms that made landfall during the 2017 Atlantic hurricane season — Harvey, Irma and Maria — together cost the United States at least $265 billion, according to the National Oceanic and Atmospheric Administration.
By continuing on its current trajectory of greenhouse gas emissions, the “business-as-usual” scenario, the United States will see the greatest losses, the assessments concludes. However, the report also considers climate impacts in an alternate future, in which the world has taken modest actions to curb greenhouse emissions, including using more carbon-neutral fuels and the growth of technological innovations to remove carbon dioxide from the atmosphere (SN Online: 10/20/18).
Earth’s heart may have a secret chamber. The planet’s inner core isn’t just a solid ball of nickel and iron, researchers say, but contains two layers of its own: a distinct central region nestled within an outer shell.
Scientists say they have confirmed the existence of this innermost inner core using a type of previously undescribed seismic wave that not only travels through Earth’s core but also bounces back and forth through the interior, collecting invaluable data about the core’s structure along the way. Focusing on earthquakes of magnitude 6 or larger that struck in the last decade, the researchers combined data on these quakes that were collected at seismic stations around the world. Combining these signals made it possible to detect even very faint reflections of the seismic waves. Of the 200 or so quakes analyzed, 16 events spawned seismic waves that detectably bounced through the inner core multiple times.
The origin, structure and fate of Earth’s core is of intense interest because the core generates the planet’s magnetic field, which shields the Earth from charged particles ejected by the sun and helps keep the planet’s denizens safe from too much radiation.
“Understanding how the magnetic field evolves is extremely important for the life on Earth’s surface,” says Hrvoje Tkalčić, a seismologist at the Australian National University in Canberra.
The entire core, about 6,600 kilometers across, consists of two main parts: a liquid outer core and a solid inner core (SN: 1/23/23). As iron-rich fluid circulates in the outer core, some of the material cools and crystallizes, sinking to form a solid center. That interplay generates Earth’s magnetic field.
When this swirling dance first began isn’t certain, but some studies suggest it was as recent as 565 million years ago, just a fraction of Earth’s 4.6-billion-year-long life span (SN: 1/28/19). That dance has faltered from time to time, its stuttering steps preserved in tiny magnetic grains in rocks. These data suggest the planet’s magnetic poles have flip-flopped many times over the years, temporarily weakening the magnetic field (SN: 2/18/21). As more and more crystals cool, the dance will eventually slow and stop, shutting off the planet’s magnetic field millions or billions of years from now.
Different types and structures of minerals, as well as different amounts of liquid in the subsurface, can change the speed of seismic waves traveling through Earth, offering clues to the makeup of the interior. In 2002, researchers noted that seismic waves traveling through the innermost part of Earth move slightly slower in one direction relative to the planet’s poles than in other directions. That suggests there’s some oddity there — a difference in crystal structure, perhaps. That hidden heart, the team suggested, might be a kind of fossil: a long-preserved remnant of the core’s early formation.
Since that observation, Tkalčić and others have pored over seismic data, finding independent lines of evidence that help support the idea of an innermost inner core. The reverberating seismic waves, described February 21 in Nature Communications, also show a slowdown, and are the strongest evidence yet that this hidden heart exists. Using that seismic data, Tkalčić and seismologist Thanh-Son Phạm, also of the Australian National University, estimate that this inner heart is roughly 600 kilometers across, or about half the diameter of the full inner core. And the pair was able to assess the direction of the slowest waves at about 50 degrees relative to the Earth’s rotation axis, providing more insight into the region.
The exact source of the wave slowdown isn’t clear, Tkalčić says. The phenomenon might be related to the structure of the iron crystals, which may be packed together differently farther into the center. Or it could be from a different crystal alignment caused by some long-ago global event that changed how inner core crystals solidified out of the outer core.
The inner core holds many other mysteries too. Lighter elements present in small amounts in the core — hydrogen, carbon, oxygen — may flow around the solid iron in a liquidlike “superionic” state, further complicating the seismic picture (SN: 2/9/22).
By identifying and reporting seismic waves that bounced back and forth through the planet’s interior multiple times, the researchers have made an invaluable contribution that will help researchers study the core in new ways, says seismologist Paul Richards of Columbia University’s Lamont-Doherty Earth Observatory in Palisades, N.Y.
Still, the team’s interpretation of the inner core’s structure from those waves “is probably more iffy,” says Richards, who wasn’t involved in the work.
One reason for this uncertainty is that as the waves bounce back and forth, they can become weaker and more difficult to see in the data, he says. “Many further observations will help decide” what these new data can reveal about the heart of the planet.
Future therapy patients may spend a lot more time exploring virtual environments than sitting on sofas.
In a clinical trial of a new virtual reality treatment for fear of heights, participants reported being much less afraid after using the program for just two weeks. Unlike other VR therapies, which required that a real-life therapist guide patients through treatment, the new system uses an animated avatar to coach patients through ascending a virtual high-rise. This kind of fully automated counseling system, described online July 11 in the Lancet Psychiatry, may make psychological treatments for phobias and other disorders far more accessible. This is “a huge step forward” for therapeutic VR, says Jennifer Hames, a clinical psychologist at the University of Notre Dame in Indiana, who wasn’t involved in the work. By bringing expert therapy out of the counselor’s office and into primary care clinics — or even people’s homes — the new system could help those who aren’t comfortable or don’t have the means to speak with a therapist face-to-face, she says. Users immerse themselves in this virtual reality program using a VR headset, handheld controllers and headphones. An animated counselor guides the user through a virtual 10-story office complex, where upper floors overlook a ground-level atrium. On every floor, the user performs tasks designed to test their fear responses and help them learn that they’re safer than they might think. The tasks start out relatively easy — like standing close to a drop-off where a safety barrier gradually lowers — and progress to more difficult challenges — like riding a moving platform out into the open space over the atrium. By working through these activities, “the person builds up memories that being around heights is safe, and this counteracts the old fear beliefs,” says Daniel Freeman, a clinical psychologist at the University of Oxford.
To test their program’s effectiveness, Freeman and colleagues recruited 100 adult volunteers who were moderately to severely afraid of heights. The researchers randomly assigned 49 people to undergo VR treatment, which involved using the program for about six 30-minute sessions over two weeks, while the other 51 participants received no treatment.
Participants filled out a questionnaire that rated their fear of heights from 16 to 80 (with 80 being most severe), before treatment, immediately afterward, and two weeks later. People who underwent VR treatment dropped about 25 points on average on the questionnaire’s scale, while patients who received no treatment remained stable. Participants who used the VR program found they “could go to places that they wouldn’t have imagined possible,” Freeman says, like steep mountains, rope bridges or simply escalators in shopping malls.
“When I’ve always got anxious about an edge, I could feel the adrenaline in my legs, that fight/flight thing; that’s not happening as much now,” one participant said. “I’m still getting a bit of a reaction to it, both in VR and outside as well, but it’s much more brief, and I can then feel my thighs soften up as I’m not bracing up against that edge.”
While the clinical trial results provide strong evidence that the new VR program mitigates fear better than no treatment at all, researchers still need to investigate how VR therapy stacks up against sessions with a therapist, Hames says. And since Freeman’s team only tracked treatment effects up to a couple of weeks after their experiment, it remains to be seen how long the effects of this therapy last — although previous research on therapist-led VR treatment have shown lasting impacts for at least a year.
While fully automated VR therapy may be good news for people who fear heights, it’s not clear how well this type of system could address more complex mental health issues, says Mark Hayward, a clinical psychologist at the University of Sussex in England whose commentary on the study appears in the same issue of the Lancet Psychiatry. Virtual environments may be well suited for helping people who fear everyday situations, like those who suffer from common phobias, social anxiety or paranoia, Hayward says. But when it comes to helping people with more severe symptoms, like psychosis, VR probably won’t stand in for trained therapists any time soon.
“We can’t get carried away and say we can automate all [mental health] treatment,” says Albert Rizzo, a clinical virtual reality developer at the University of Southern California in Playa Vista not involved in the work. But the new standalone system for curbing fear of heights is “an excellent first effort.”
Just a few powerful storms in Antarctica can have an outsized effect on how much snow parts of the southernmost continent get. Those ephemeral storms, preserved in ice cores, might give a skewed view of how quickly the continent’s ice sheet has grown or shrunk over time.
Relatively rare extreme precipitation events are responsible for more than 40 percent of the total annual snowfall across most of the continent — and in some places, as much as 60 percent, researchers report March 22 in Geophysical Research Letters. Climatologist John Turner of the British Antarctic Survey in Cambridge and his colleagues used regional climate simulations to estimate daily precipitation across the continent from 1979 to 2016. Then, the team zoomed in on 10 locations — representing different climates from the dry interior desert to the often snowy coasts and the open ocean — to determine regional differences in snowfall.
While snowfall amounts vary greatly by location, extreme events packed the biggest wallop along Antarctica’s coasts, especially on the floating ice shelves, the researchers found. For instance, the Amery ice shelf in East Antarctica gets roughly half of its annual precipitation — which typically totals about half a meter of snow — in just 10 days, on average. In 1994, the ice shelf got 44 percent of its entire annual precipitation on a single day in September.
Ice cores aren’t just a window into the past; they are also used to predict the continent’s future in a warming world. So characterizing these coastal regions is crucial for understanding Antarctica’s ice sheet — and its potential future contribution to sea level rise. Editor’s note: This story was updated April 5, 2019, to correct that the results were reported March 22 (not March 25).
We live in a sea of neutrinos. Every second, trillions of them pass through our bodies. They come from the sun, nuclear reactors, collisions of cosmic rays hitting Earth’s atmosphere, even the Big Bang. Among fundamental particles, only photons are more numerous. Yet because neutrinos barely interact with matter, they are notoriously difficult to detect.
The existence of the neutrino was first proposed in the 1930s and then verified in the 1950s (SN: 2/13/54). Decades later, much about the neutrino — named in part because it has no electric charge — remains a mystery, including how many varieties of neutrinos exist, how much mass they have, where that mass comes from and whether they have any magnetic properties. These mysteries are at the heart of Ghost Particle by physicist Alan Chodos and science journalist James Riordon. The book is an informative, easy-to-follow introduction to the perplexing particle. Chodos and Riordon guide readers through how the neutrino was discovered, what we know — and don’t know — about it, and the ongoing and future experiments that (fingers crossed) will provide the answers.
It’s not just neutrino physicists who await those answers. Neutrinos, Riordon says, “are incredibly important both for understanding the universe and our existence in it.” Unmasking the neutrino could be key to unlocking the nature of dark matter, for instance. Or it could clear up the universe’s matter conundrum: The Big Bang should have produced equal amounts of matter and antimatter, the oppositely charged counterparts of electrons, protons and so on. When matter and antimatter come into contact, they annihilate each other. So in theory, the universe today should be empty — yet it’s not (SN: 9/22/22). It’s filled with matter and, for some reason, very little antimatter.
Science News spoke with Riordon, a frequent contributor to the magazine, about these puzzles and how neutrinos could act as a tool to observe the cosmos or even see into our own planet. The following conversation has been edited for length and clarity.
SN: In the first chapter, you list eight unanswered questions about neutrinos. Which is the most pressing to answer?
Riordon: Whether they’re their own antiparticles is probably one of the grandest. The proposal that neutrinos are their own antiparticles is an elegant solution to all sorts of problems, including the existence of this residue of matter we live in. Another one is figuring out how neutrinos fit in the standard model [of particle physics]. It’s one of the most successful theories there is, but it can’t explain the fact that neutrinos have mass. SN: Why is now a good time to write a book about neutrinos?
Riordon: All of these questions about neutrinos are sort of coming to a head right now — the hints that neutrinos may be their own antiparticles, the issues of neutrinos not quite fitting the standard model, whether there are sterile neutrinos [a hypothetical neutrino that is a candidate for dark matter]. In the next few years, a decade or so, there will be a lot of experiments that will [help answer these questions,] and the resolution either way will be exciting.
SN: Neutrinos could also be used to help scientists observe a range of phenomena. What are some of the most interesting questions neutrinos could help with?
Riordon: There are some observations that simply have to be done with neutrinos, that there are no other technological alternatives for. There’s a problem with using light-based telescopes to look back in history. We have this really amazing James Webb Space Telescope that can see really far back in history. But at some point, when you go far enough back, the universe is basically opaque to light; you can’t see into it. Once we narrow down how to detect and how to measure the cosmic neutrino background [neutrinos that formed less than a second after the Big Bang], it will be a way to look back at the very beginning. Other than with gravitational waves, you can’t see back that far with anything else. So it’ll give us sort of a telescope back to the beginning of the universe.
The other thing is, when a supernova happens, all kinds of really cool stuff happens inside, and you can see it with neutrinos because neutrinos come out immediately in a burst. We call it the “cosmic neutrino bomb,” but you can track the supernova as it’s going along. With light, it takes a while for it to get out [of the stellar explosion]. We’re due for a [nearby] supernova. We haven’t had one since 1987. It was the last visible supernova in the sky and was a boon for research. Now that we have neutrino detectors around the world, this next one is going to be even better [for research], even more exciting.
And if we develop better instrumentation, we could use neutrinos to understand what’s going on in the center of the Earth. There’s no other way that you could probe the center of the Earth. We use seismic waves, but the resolution is really low. So we could resolve a lot of questions about what the planet is made of with neutrinos.
SN: Do you have a favorite “character” in the story of neutrinos?
Riordon: I’m certainly very fond of my grandfather Clyde Cowan [he and Frederick Reines were the first physicists to detect neutrinos]. But Reines is a riveting character. He was poetic. He was a singer. He really was this creative force. I mentioned [in the book] that they put this “SNEWS” sign on their detector for “supernova early warning system,” which sort of echoed the ballistic missile early warning systems at the time [during the Cold War]. That’s so ripe.
For the first time, astronomers have caught a glimpse of shock waves rippling along strands of the cosmic web — the enormous tangle of galaxies, gas and dark matter that fills the observable universe.
Combining hundreds of thousands of radio telescope images revealed the faint glow cast as shock waves send charged particles flying through the magnetic fields that run along the cosmic web. Spotting these shock waves could give astronomers a better look at these large-scale magnetic fields, whose properties and origins are largely mysterious, researchers report in the Feb. 17 Science Advances. Finally, astronomers “can confirm what so far has only been predicted by simulations — that these shock waves exist,” says astrophysicist Marcus Brüggen of the University of Hamburg in Germany, who was not involved in the new study.
At its grandest scale, our universe looks something like Swiss cheese. Galaxies aren’t distributed evenly through space but rather are clumped together in enormous clusters connected by ropy filaments of dilute gas, galaxies and dark matter and separated by not-quite-empty voids (SN: 10/3/19).
Tugged by gravity, galaxy clusters merge, filaments collide, and gas from the voids falls onto filaments and clusters. In simulations of the cosmic web, all that action consistently sets off enormous shock waves in and along filaments.
Filaments make up most of the cosmic web but are much harder to spot than galaxies (SN: 1/20/14). While scientists have observed shock waves around galaxy clusters before, shocks in filaments “have never been really seen,” says astronomer Reinout van Weeren of Leiden University in the Netherlands, who was not involved in the study. “But they should be basically all around the cosmic web.”
Shock waves around filaments would accelerate charged particles through the magnetic fields that suffuse the cosmic web (SN: 6/6/19). When that happens, the particles emit light at wavelengths that radio telescopes can detect — though the signals are very weak. A single shock wave in a filament “would look like nothing, it’d look like noise,” says radio astronomer Tessa Vernstrom of the International Centre for Radio Astronomy Research in Crawley, Australia.
Instead of looking for individual shock waves, Vernstrom and her colleagues combined radio images of more than 600,000 pairs of galaxy clusters close enough to be connected by filaments to create a single “stacked” image. This amplified weak signals and revealed that, on average, there is a faint radio glow from the filaments between clusters.
“When you can dig below the noise and still actually get a result — to me, that’s personally exciting,” Vernstrom says.
The faint signal is highly polarized, meaning that the radio waves are mostly aligned with one another. Highly polarized light is unusual in the cosmos, but it is expected from radio light cast by shock waves, van Weeren says. “So that’s really, I think, very good evidence for the fact that the shocks are likely indeed present.” The discovery goes beyond confirming the predictions of cosmic web simulations. The polarized radio emissions also offer a rare peek at the magnetic fields that permeate the cosmic web, if only indirectly.
“These shocks,” Brüggen says, “are really able to show that there are large-scale magnetic fields that form [something] like a sheath around these filaments.”
He, van Weeren and Vernstrom all note that it’s still an open question how cosmic magnetic fields arose in the first place. The role these fields play in shaping the cosmic web is equally mysterious.
“It’s one of the four fundamental forces of nature, right? Magnetism,” Vernstrom says. “But at least on these large scales, we don’t really know how important it is.”
For generations of dogs, home is the radioactive remains of the Chernobyl Nuclear Power Plant.
In the first genetic analysis of these animals, scientists have discovered that dogs living in the power plant industrial area are genetically distinct from dogs living farther away.
Though the team could distinguish between dog populations, the researchers did not pinpoint radiation as the reason for any genetic differences. But future studies that build on the findings, reported March 3 in Science Advances, may help uncover how radioactive environments leave their mark on animal genomes. That could have implications for other nuclear disasters and even human space travel, says Timothy Mousseau, an evolutionary ecologist at the University of South Carolina in Columbia. “We have high hopes that what we learn from these dogs … will be of use for understanding human exposures in the future,” he says.
Since his first trip in 1999, Mousseau has stopped counting how many times he’s been to Chernobyl. “I lost track after we hit about 50 visits.”
He first encountered Chernobyl’s semi-feral dogs in 2017, on a trip with the Clean Futures Fund+, an organization that provides veterinary care to the animals. Not much is known about how local dogs survived after the nuclear accident. In 1986, an explosion at one of the power plant’s reactors kicked off a disaster that lofted vast amounts of radioactive isotopes into the air. Contamination from the plant’s radioactive cloud largely settled nearby, in a region now called the Chernobyl Exclusion Zone.
Dogs have lived in the area since the disaster, fed by Chernobyl cleanup workers and tourists. Some 250 strays were living in and around the power plant, among spent fuel-processing facilities and in the shadow of the ruined reactor. Hundreds more roam farther out in the exclusion zone, an area about the size of Yosemite National Park. During Mousseau’s visits, his team collected blood samples from these dogs for DNA analysis, which let the researchers map out the dogs’ complex family structures. “We know who’s related to who,” says Elaine Ostrander, a geneticist at the National Human Genome Research Institute in Bethesda, Md. “We know their heritage.”
The canine packs are not just a hodgepodge of wild feral dogs, she says. “There are actually families of dogs breeding, living, existing in the power plant,” she says. “Who would have imagined?”
Dogs within the exclusion zone share ancestry with German shepherds and other shepherd breeds, like many other free-breeding dogs from Eastern Europe, the team reports. And though their work revealed that dogs in the power plant area look genetically different from dogs in Chernobyl City, about 15 kilometers away, the team does not know whether radiation caused these differences or not, Ostrander says. The dogs may be genetically distinct simply because they’re living in a relatively isolated area.
The new finding is not so surprising, says Jim Smith, an environmental scientist at the University of Portsmouth in England. He was not part of the new study but has worked in this field for decades. He’s concerned that people might assume “that the radiation has something to do with it,” he says. But “there’s no evidence of that.”
Scientists have been trying to pin down how radiation exposure at Chernobyl has affected wildlife for decades (SN: 5/2/14). “We’ve been looking at the consequences for birds and rodents and bacteria and plants,” Mousseau says. His team has found animals with elevated mutation rates, shortened life spans and early-onset cataracts.
It’s not easy to tease out the effects of low-dose radiation among other factors, Smith says. “[These studies] are so hard … there’s lots of other stuff going in the natural environment.” What’s more, animals can reap some benefits when humans leave contaminated zones, he says.
How, or if, radiation damage is piling up in dogs’ genomes is something the team is looking into now, Ostrander says. Knowing the dogs’ genetic backgrounds will make it easier to spot any radiation red flags, says Bridgett vonHoldt, an evolutionary geneticist at Princeton University, who was not involved in the work.
“I feel like it’s a cliffhanger,” she says. “I want to know more.”
To shrink error rates in quantum computers, sometimes more is better. More qubits, that is.
The quantum bits, or qubits, that make up a quantum computer are prone to mistakes that could render a calculation useless if not corrected. To reduce that error rate, scientists aim to build a computer that can correct its own errors. Such a machine would combine the powers of multiple fallible qubits into one improved qubit, called a “logical qubit,” that can be used to make calculations (SN: 6/22/20).
Scientists now have demonstrated a key milestone in quantum error correction. Scaling up the number of qubits in a logical qubit can make it less error-prone, researchers at Google report February 22 in Nature. Future quantum computers could solve problems impossible for even the most powerful traditional computers (SN: 6/29/17). To build those mighty quantum machines, researchers agree that they’ll need to use error correction to dramatically shrink error rates. While scientists have previously demonstrated that they can detect and correct simple errors in small-scale quantum computers, error correction is still in its early stages (SN: 10/4/21).
The new advance doesn’t mean researchers are ready to build a fully error-corrected quantum computer, “however, it does demonstrate that it is indeed possible, that error correction fundamentally works,” physicist Julian Kelly of Google Quantum AI said in a news briefing February 21. Logical qubits store information redundantly in multiple physical qubits. That redundancy allows a quantum computer to check if any mistakes have cropped up and fix them on the fly. Ideally, the larger the logical qubit, the smaller the error rate should be. But if the original qubits are too faulty, adding in more of them will cause more problems than it solves.
Using Google’s Sycamore quantum chip, the researchers studied two different sizes of logical qubits, one consisting of 17 qubits and the other of 49 qubits. After making steady improvements to the performance of the original physical qubits that make up the device, the researchers tallied up the errors that still slipped through. The larger logical qubit had a lower error rate, about 2.9 percent per round of error correction, compared to the smaller logical qubit’s rate of about 3.0 percent, the researchers found. That small improvement suggests scientists are finally tiptoeing into the regime where error correction can begin to squelch errors by scaling up. “It’s a major goal to achieve,” says physicist Andreas Wallraff of ETH Zurich, who was not involved with the research.
However, the result is only on the cusp of showing that error correction improves as scientists scale up. A computer simulation of the quantum computer’s performance suggests that, if the logical qubit’s size were increased even more, its error rate would actually get worse. Additional improvement to the original faulty qubits will be needed to enable scientists to really capitalize on the benefits of error correction.
Still, milestones in quantum computation are so difficult to achieve that they’re treated like pole jumping, Wallraff says. You just aim to barely clear the bar.