Supercooled water has been caught morphing between two forms

Supercooled water is two of a kind, a new study shows.

Scientists have long suspected that water at subfreezing temperatures comes in two distinct varieties: a high-density liquid that appears at very high pressures and a low-density liquid at lower pressures. Now, ultrafast measurements have caught water morphing from one type of liquid to the other, confirming that hunch. The discovery, reported in the Nov. 20 Science, could help explain some of water’s quirks.

The experiment “adds more and more evidence to the idea that water really is two components … and that that is the reason that underlies why water is so weird,” says physicist Greg Kimmel of Pacific Northwest National Laboratory in Richland, Wash., who was not involved in the study.

When free from impurities, water can remain liquid below its typical freezing point of zero degrees Celsius, forming what’s called a supercooled liquid. But the dual nature of supercooled water was expected to appear in a temperature realm so difficult to study that it’s been dubbed “no-man’s-land.” Below around –40° C, water remains liquid for mere instants before it crystallizes into ice. Making the task even more daunting, the high-density phase appears only at very high pressures. Still, “people have dreamt about how to do an experiment,” says Anders Nilsson of Stockholm University.
Thanks to speedy experimental maneuvers, Nilsson and colleagues have infiltrated that no-man’s-land by monitoring water’s properties on a scale of nanoseconds. “This is one of the major accomplishments of this paper,” says computational chemist Gül Zerze of Princeton University. “I’m impressed with their work.”

The scientists started by creating a type of high-density ice. Then, a pulse from an infrared laser heated the ice, forming liquid water under high pressure. That water then expanded, and the pressure rapidly dropped. Meanwhile, the researchers used an X-ray laser to investigate how the structure of the water changed, based on how the X-rays scattered. As the pressure decreased, the water transitioned from a high-density to low-density fluid before crystallizing into ice.

Previous studies have used ultrafast techniques to find hints of water’s two-faced demeanor, but those have been done mainly at atmospheric pressure (SN: 9/28/20). In the new work, the water was observed at about 3,000 times atmospheric pressure and –68° C. “It’s the first time we have real experimental data at these pressures and temperatures,” says physicist Loni Kringle of Pacific Northwest National Laboratory, who was not involved with the experiment.

The result could indicate that supercooled water has a “critical point” — a certain pressure and temperature at which two distinct phases merge into one. In the future, Nilsson hopes to pinpoint that spot.

Such a critical point could explain why water is an oddball liquid. For most liquids, cooling makes them become denser and more difficult to compress. Water gets denser as it is cooled to 4° C, but becomes less dense as it is cooled further. Likewise, its compressibility increases as it’s cooled.

If supercooled water has a critical point, that could indicate that the water experienced in daily life is strange because, under typical pressures and temperatures, it is a supercritical liquid — a weird state that occurs beyond a critical point. Such a liquid would not be the high-density or low-density form, but would consist of some regions with a high-density arrangement of water molecules and other pockets of low density. The relative amounts of those two structures, which result from different arrangements of hydrogen bonds between the molecules, would change as the temperature changes, explaining why water behaves strangely as it is cooled.

So despite the fact that the experiment involved extreme pressures and temperatures, Nilsson says, “it influences water in our ordinary life.”

Why pandemic fatigue and COVID-19 burnout took over in 2022

2022 was the year many people decided the coronavirus pandemic had ended.

President Joe Biden said as much in an interview with 60 Minutes in September. “The pandemic is over,” he said while strolling around the Detroit Auto Show. “We still have a problem with COVID. We’re still doing a lot of work on it. But the pandemic is over.”

His evidence? “No one’s wearing masks. Everybody seems to be in pretty good shape.”

But the week Biden’s remarks aired, about 360 people were still dying each day from COVID-19 in the United States. Globally, about 10,000 deaths were recorded every week. That’s “10,000 too many, when most of these deaths could be prevented,” the World Health Organization Director-General Tedros Adhanom Ghebreyesus said in a news briefing at the time. Then, of course, there are the millions who are still dealing with lingering symptoms long after an infection.
Those staggering numbers have stopped alarming people, maybe because those stats came on the heels of two years of mind-boggling death counts (SN Online: 5/18/22). Indifference to the mounting death toll may reflect pandemic fatigue that settled deep within the public psyche, leaving many feeling over and done with safety precautions.

“We didn’t warn people about fatigue,” says Theresa Chapple-McGruder, an epidemiologist in the Chicago area. “We didn’t warn people about the fact that pandemics can last long and that we still need people to be willing to care about yourselves, your neighbors, your community.”

Public health agencies around the world, including in Singapore and the United Kingdom, reinforced the idea that we could “return to normal” by learning to “live with COVID.” The U.S. Centers for Disease Control and Prevention’s guidelines raised the threshold for case counts that would trigger masking (SN Online: 3/3/22). The agency also shortened suggested isolation times for infected people to five days, even though most people still test positive for the virus and are potentially infectious to others for several days longer (SN Online: 8/19/22).

The shifting guidelines bred confusion and put the onus for deciding when to mask, test and stay home on individuals. In essence, the strategy shifted from public health — protecting your community — to individual health — protecting yourself.
Doing your part can be exhausting, says Eric Kennedy, a sociologist specializing in disaster management at York University in Toronto. “Public health is saying, ‘Hey, you have to make the right choices every single moment of your life.’ Of course, people are going to get tired with that.”

Doing the right thing — from getting vaccinated to wearing masks indoors — didn’t always feel like it paid off on a personal level. As good as the vaccines are at keeping people from becoming severely ill or dying of COVID-19, they were not as effective at protecting against infection. This year, many people who tried hard to make safe choices and had avoided COVID-19 got infected by wily omicron variants (SN Online: 4/22/22). People sometimes got reinfected — some more than once (SN: 7/16/22 & 7/30/22, p. 8).
Those infections may have contributed to a sense of futility. “Like, ‘I did my best. And even with all of that work, I still got it. So why should I try?’ ” says Kennedy, head of a Canadian project monitoring the sociological effects of the COVID-19 pandemic.

Getting vaccinated, masking and getting drugs or antibody treatments can reduce the severity of infection and may cut the chances of infecting others. “We should have been talking about this as a community health issue and not a personal health issue,” Chapple-McGruder says. “We also don’t talk about the fact that our uptake [of these tools] is nowhere near what we need” to avoid the hundreds of daily deaths.

A lack of data about how widely the coronavirus is still circulating makes it difficult to say whether the pandemic is ending. In the United States, the influx of home tests was “a blessing and a curse,” says Beth Blauer, data lead for the Johns Hopkins University Coronavirus Resource Center. The tests gave an instant readout that told people whether they were infected and should isolate. But because those results were rarely reported to public health officials, true numbers of cases became difficult to gauge, creating a big data gap (SN Online: 5/27/22).
The flow of COVID-19 data from many state and local agencies also slowed to a trickle. In October, even the CDC began reporting cases and deaths weekly instead of daily. Altogether, undercounting of the coronavirus’s reach became worse than ever.

“We’re being told, ‘it’s up to you now to decide what to do,’ ” Blauer says, “but the data is not in place to be able to inform real-time decision making.”

With COVID-19 fatigue so widespread, businesses, governments and other institutions have to find ways to step up and do their part, Kennedy says. For instance, requiring better ventilation and filtration in public buildings could clean up indoor air and reduce the chance of spreading many respiratory infections, along with COVID-19. That’s a behind-the-scenes intervention that individuals don’t have to waste mental energy worrying about, he says.

The bottom line: People may have stopped worrying about COVID-19, but the virus isn’t done with us yet. “We have spent two-and-a-half years in a long, dark tunnel, and we are just beginning to glimpse the light at the end of that tunnel. But it is still a long way off,” WHO’s Tedros said. “The tunnel is still dark, with many obstacles that could trip us up if we don’t take care.” If the virus makes a resurgence, will we see it coming and will we have the energy to combat it again?

50 years ago, physicists found the speed of light

A group at the National Bureau of Standards at B­oulder, Colo., now reports an extremely accurate [speed of light] measurement using the wavelength and frequency of a helium-neon laser.… The result gives the speed of light as 299,792.4562 kilometers per second.

Update
That 1972 experiment measured the two-way speed of light, or the average speed of photons that traveled from their source to a reflective surface and back. The result, which still holds up, helped scientists redefine the standard length of the meter (SN: 10/22/83, p. 263). But they weren’t done putting light through its paces. In the late 1990s and early 2000s, photons set a record for slowest measured speed of light at 17 meters per second and froze in their tracks for one-thousandth of a second (SN: 1/27/01, p. 52). For all that success, one major hurdle remains: directly testing the one-way speed of light. The measurement, which many scientists say is impossible to make, could resolve the long-standing question of whether the speed of light is uniform in all directions.

Protecting the brain from infection may start with a gut reaction

Some immune defenses of the brain may have their roots in the gut.

A new study in mice finds that immune cells are first trained in the gut to recognize and launch attacks on pathogens, and then migrate to the brain’s surface to protect it, researchers report online November 4 in Nature. These cells were also found in surgically removed parts of human brains.

Every minute, around 750 milliliters of blood flow through the brain, giving bacteria, viruses or other blood-borne pathogens an opportunity to infect the organ. For the most part, the invaders are kept out by three membrane layers, called the meninges, which wrap around the brain and spinal cord and act as a physical barrier. If a pathogen does manage to breach that barrier, the researchers say, the immune cells trained in the gut are ready to attack by producing a battalion of antibodies.

The most common route for a pathogen to end up in the bloodstream is from the gut. “So, it makes perfect sense for these [immune cells] to be educated, trained and selected to recognize things that are present in the gut,” says Menna Clatworthy, an immunologist at the University of Cambridge.

Clatworthy’s team found antibody-producing plasma cells in the leathery meninges, which lie between the brain and skull, in both mice and humans. These immune cells produced a class of antibodies called immunoglobulin A, or IgA.

These cells and antibodies are mainly found in the inner lining of the gut and lungs, so the scientists wondered if the cells on the brain had any link to the gut. It turned out that there was: Germ-free mice, which had no microbes in their guts, didn’t have any plasma cells in their meninges either. However, when bacteria from the poop of other mice and humans were transplanted into the mice’s intestines, their gut microbiomes were restored, and the plasma cells then appeared in the meninges.

“This was a powerful demonstration of how important the gut could be at determining what is found in the meninges,” Clatworthy says.

Researchers captured microscope images of an attack in the meninges of mice that was led by plasma cells that had likely been trained in the guts. When the team implanted a pathogenic fungus, commonly found in the intestine, into the mice’s bloodstream, the fungus attempted to enter the brain through the walls of blood vessels in the meninges. However, plasma cells in the membranes formed a mesh made of IgA antibodies around the pathogen, blocking its entry. The plasma cells are found along the blood vessels, Clatworthy says, where they can quickly launch an attack on pathogens.

“To my knowledge, this is the first time anyone has shown the presence of plasma cells in the meninges. The study has rewritten the paradigm of what we know about these plasma cells and how they play a critical role in keeping our brain healthy,” says Matthew Hepworth, an immunologist at the University of Manchester in England who was not involved with the study. More research is needed to classify how many of the plasma cells in the meninges come from the gut, he says.

The finding adds to growing evidence that gut microbes can play a role in brain diseases. A previous study, for instance, suggested that in mice, boosting a specific gut bacterium could help fight amyotrophic lateral sclerosis, or ALS, a fatal neurological disease that results in paralysis (SN: 7/22/19). And while the new study found the plasma cells in the brains of healthy mice, previous research has found other gut-trained cells in the brains of mice with multiple sclerosis, an autoimmune disease of the brain and the spinal cord.

For now, the researchers want to understand what cues plasma cells follow in the guts to know it is time for them to embark on a journey to the brain.

With Theta, 2020 sets the record for most named Atlantic storms

It’s official: 2020 now has the most named storms ever recorded in the Atlantic in a single year.

On November 9, a tropical disturbance brewing in the northeastern Atlantic Ocean gained enough strength to become a subtropical storm. With that, Theta became the year’s 29th named storm, topping the 28 that formed in 2005.

With maximum sustained winds near 110 kilometers per hour as of November 10, Theta is expected to churn over the open ocean for several days. It’s too early to predict Theta’s ultimate strength and trajectory, but forecasters with the National Oceanic and Atmospheric Administration say they expect the storm to weaken later in the week.

If so, like most of the storms this year, Theta likely won’t become a major hurricane. That track record might be the most surprising thing about this season — there’s been a record-breaking number of storms, but overall they’ve been relatively weak. Only five — Laura, Teddy, Delta, Epsilon and Eta — have become major hurricanes with winds topping 178 kilometers per hour, although only Laura and Eta made landfall near the peak of their strength as Category 4 storms.

Even so, the 2020 hurricane season started fast, with the first nine storms arriving earlier than ever before (SN: 9/7/20). And the season has turned out to be the most active since naming began in 1953, thanks to warmer-than-usual water in the Atlantic and the arrival of La Niña, a regularly-occurring period of cooling in the Pacific, which affects winds in the Atlantic and helps hurricanes form (SN: 9/21/19). If a swirling storm reaches wind speeds of 63 kilometers per hour, it gets a name from a list of 21 predetermined names. When that list runs out, the storm gets a Greek letter.

While the wind patterns and warm Atlantic water temperatures set the stage for the string of storms, it’s unclear if climate change is playing a role in the number of storms. As the climate warms, though, you would expect to see more of the destructive, high-category storms, says Kerry Emanuel, an atmospheric scientist at MIT. “And this year is not a poster child for that.” So far, no storm in 2020 has been stronger than a Category 4. The 2005 season had multiple Category 5 storms, including Hurricane Katrina (SN: 12/20/05).

There’s a lot amount of energy in the ocean and atmosphere this year, including the unusually warm water, says Emanuel. “The fuel supply could make a much stronger storm than we’ve seen,” says Emanuel, “so the question is: What prevents a lot of storms from living up to their potential?”
A major factor is wind shear, a change in the speed or direction of wind at different altitudes. Wind shear “doesn’t seem to have stopped a lot of storms from forming this year,” Emanuel says, “but it inhibits them from getting too intense.” Hurricanes can also create their own wind shear, so when multiple hurricanes form in close proximity, they can weaken each other, Emanuel says. And at times this year, several storms did occupy the Atlantic simultaneously — on September 14, five storms swirled at once.

It’s not clear if seeing hurricane season run into the Greek alphabet is a “new normal,” says Emanuel. The historical record, especially before the 1950s is spotty, he says, so it’s hard to put this year’s record-setting season into context. It’s possible that there were just as many storms before naming began in the ‘50s, but that only the big, destructive ones were recorded or noticed. Now, of course, forecasters have the technology to detect all of them, “so I wouldn’t get too bent out of shape about this season,” Emanuel says.

Some experts are hesitant to even use the term “new normal.”

“People talk about the ‘new normal,’ and I don’t think that is a good phrase,” says James Done, an atmospheric scientist at the National Center for Atmospheric Research in Boulder, Colo. “It implies some new stable state. We’re certainly not in a stable state — things are always changing.”

Some songbirds now migrate east to west. Climate change may play a role

As the chill of autumn encroaches on Siberia’s grasslands, Richard’s pipits usually begin their southward trek to warmer latitudes. But a growing number of the slender, larklike songbirds seem to be heading west instead, possibly establishing a new migratory route for the species.

This would be the first new route known to emerge on an east-west axis in a long-distance migratory bird, researchers report October 22 in Current Biology. The finding could have implications for how scientists understand the evolution of bird migration routes over time and how the animals adapt to a shifting climate.

Richard’s pipits (Anthus richardi) typically breed in Siberia during the summer and travel south for the winter to southern Asia. Occasionally, “vagrant” birds get lost and show up far from this range, including in Europe. But as a Ph.D. student at the Université Grenoble Alpes in France, evolutionary biologist Paul Dufour noticed, along with colleagues, that described sightings and photo records of the pipits wintering in southern France had increased from a handful of birds annually in the 1980s and 1990s to many dozens in recent years.

So, Dufour, now at the University of Gothenburg in Sweden, and his team started monitoring the pipits in France and Spain to see where the birds were coming from, and if the birds were visiting Europe on purpose or just getting lost.

The researchers captured seven pipits in France during the winter of 2019–2020, tagging them with a sensor that estimates the birds’ geographic positions based on light levels and length of day. The team then released the birds. The next winter, the team successfully recaptured three of them. Those sensors showed that the birds had all flown back to the same part of southwestern Siberia for the summer before returning to France.

The researchers also examined images in citizen-science databases of 331 Richard’s pipits that were photographed in Europe and North Africa, categorizing the birds by apparent age. Among songbirds, Dufour says, vagrants are always young birds. Songbirds tend to follow a route based on instincts written into their DNA, replicating the trip their ancestors took. But storms or mutations that create faulty wayfinding abilities can send young songbirds off target.
Wherever it arrives, the songbird’s first migration creates a mental map for every migration after, so any adult birds in Europe have made the trip more than once. Since more than half of the birds in southern Europe and nearby northwestern Africa documented in the winter were adults, Dufour and his colleagues think that many of these pipits are seasonal migrants.

Contemporary shifts in migration routes are more common in species that travel via the cues of a traveling group, like geese or cranes. Songbirds usually migrate alone, following their instinctual route when young, Dufour says, so changes to migration patterns are rarer.

What’s more, east-west migration is unusual in birds. Most species that travel this way are ones that migrate short distances within the tropics, says Jessie Williamson, an ornithologist at the University of New Mexico in Albuquerque who was not involved with the research. “It’s exciting that an understudied migratory behavior like east-west migration is in the spotlight,” she says.

If the pipits’ European trek is in fact now an established route, it’s possible that the detour was facilitated by climate change, which may also be meddling with birds’ migrations in other ways (SN: 12/17/19). Dufour and his team used computer models that estimate climate suitability for the pipits in Europe based on variables like temperature and precipitation. The researchers compared two periods — 1961 to 1990 and 1990 to 2018 — and found that warmer temperatures in the latter period have made most parts of southern Europe a better wintering location for the birds than they were before.
The selection of European wintering grounds may also involve the deterioration of ancestral, southern Asian sites, but the researchers haven’t investigated that yet. Climate change could be affecting that too, Dufour says. But “we suspect that habitat modification in Southeast Asia — increasing urbanization, less open areas — may also be part of the equation.”

Ginny Chan, an ecologist at the Swiss Ornithological Institute in Sempach who was not involved with the research, says that the types of environmental changes that could be hurting bird populations “are happening very quickly in the traditional wintering range [for Richard’s pipits] in South and East Asia.” In India, the Richard’s pipit population has declined by more than 90 percent over the last couple of decades, Chan says.

Other Siberian bird species that typically migrate south but have recently shown up in Europe in growing numbers, like the yellow-browed warbler and Siberian chiffchaff, may also be making their own westward routes, Dufour suspects.

If other Siberian songbird species are also establishing new western migration routes, this could mean that migratory songbirds are more flexible travelers than scientists previously thought, Dufour says.

That could have hopeful implications for some birds as species worldwide deal with a changing climate. But the new research, he adds, shouldn’t overshadow other studies of migratory birds — like barnacle geese and the European pied flycatcher — which show that some of these species are not as able to cope with climate change.

Space rocks may have bounced off baby Earth, but slammed into Venus

Squabbling sibling planets may have hurled space rocks when they were young.

Simulations suggest that space rocks the size of baby planets struck both the newborn Earth and Venus, but many of the rocks that only grazed Earth went on to hit — and stick — to Venus. That difference in early impacts could help explain why Earth and Venus are such different worlds today, researchers report September 23 in the Planetary Science Journal.

“The pronounced differences between Earth and Venus, in spite of their similar orbits and masses, has been one of the biggest puzzles in our solar system,” says planetary scientist Shigeru Ida of the Tokyo Institute of Technology, who was not involved in the new work. This study introduces “a new point that has not been raised before.”

Scientists have typically thought that there are two ways that collisions between baby planets can go. The objects could graze each other and each continue on its way, in a hit-and-run collision. Or two protoplanets could stick together, or accrete, making one larger planet. Planetary scientists often assume that every hit-and-run collision eventually leads to accretion. Objects that collide must have orbits that cross each other’s, so they’re bound to collide again and again, and eventually should stick.
But previous work from planetary scientist Erik Asphaug of the University of Arizona in Tucson and others suggests that isn’t so. It takes special conditions for two planets to merge, Asphaug says, like relatively slow impact speeds, so hit-and-runs were probably much more common in the young solar system.

Asphaug and colleagues wondered what that might have meant for Earth and Venus, two apparently similar planets with vastly different climates. Both worlds are about the same size and mass, but Earth is wet and clement while Venus is a searing, acidic hellscape (SN: 2/13/18).

“If they started out on similar pathways, somehow Venus took a wrong turn,” Asphaug says.

The team ran about 4,000 computer simulations in which Mars-sized protoplanets crashed into a young Earth or Venus, assuming the two planets were at their current distances from the sun. The researchers found that about half of the time, incoming protoplanets grazed Earth without directly colliding. Of those, about half went on to collide with Venus.

Unlike Earth, Venus ended up accreting most of the objects that hit it in the simulations. Hitting Earth first slowed incoming objects down enough to let them stick to Venus later, the study suggests. “You have this imbalance where things that hit the Earth, but don’t stick, tend to end up on Venus,” Asphaug says. “We have a fundamental explanation for why Venus ended up accreting differently from the Earth.”

If that’s really what happened, it would have had a significant effect on the composition of the two worlds. Earth would have ended up with more of the outer mantle and crust material from the incoming protoplanets, while Venus would have gotten more of their iron-rich cores.

The imbalance in impacts could even explain some major Venusian mysteries, like why the planet doesn’t have a moon, why it spins so slowly and why it lacks a magnetic field — though “these are hand-waving kind of conjectures,” Asphaug says.

Ida says he hopes that future work will look into those questions more deeply. “I’m looking forward to follow-up studies to examine if the new result actually explains the Earth-Venus difference,” he says.

The idea fits into a growing debate among planetary scientists about how the solar system grew up, says planetary scientist Seth Jacobson of Michigan State University in East Lansing. Was it built violently, with lots of giant collisions, or calmly, with planets growing smoothly via pebbles sticking together?

“This paper falls on the end of lots of giant impacts,” Jacobson says.

Each rocky planet in the solar system should have very different chemistry and structure depending on which scenario is true. But scientists know the chemistry and structure of only one planet with any confidence: Earth. And Earth’s early history has been overwritten by plate tectonics and other geologic activity. “Venus is the missing link,” Jacobson says. “Learning more about Venus’ chemistry and interior structure is going to tell us more about whether it had a giant impact or not.”

Three missions to Venus are expected to launch in the late 2020s and 2030s (SN: 6/2/21). Those should help, but none are expected to take the kind of detailed composition measurements that could definitively solve the mystery. That would take a long-lived lander, or a sample return mission, both of which would be extremely difficult on hot, hostile Venus.

“I wish there was an easier way to test it,” Jacobson says. “I think that’s where we should concentrate our energy as terrestrial planet formation scientists going forward.”

James Franklin contract details: Penn State ends LSU, USC rumors with new 10-year extension

One of the hottest names in college football coaching searches is officially off the market.

Penn State's James Franklin agreed to a deal Tuesday that will keep him at the school for the next 10 years, until 2031. Franklin is in his eighth season leading the Nittany Lions.
Franklin had been linked to numerous open coaching gigs, most notably USC and LSU, despite Penn State's relative struggles this season.

However, the 49-year-old who has described Penn State as a "dream job," has also reaffirmed his commitment and loyalty to the program in recent weeks, as well.

"Penn State's future is bright, and I'm honored to continue to serve as your head football coach," Franklin said in a statement. "Nine weeks ago, the administration approached me about making a long-term investment in our football program. This prompted numerous conversations outlining the resources needed to be competitive at a level that matches the expectations and history of Penn State."

The Nittany Lions are 7-4 this year and 67-32 in Franklin's tenure in Happy Valley, with a game against Michigan State in East Lansing set for Saturday.

Here's everything to know about Franklin's contract extension, plus how it came together.

James Franklin contract details, salary
For much of his time at Penn State, Franklin has been one of the highest paid coaches in both the Big Ten and NCAA, with his $7 million annual salary ranking in the top 10.

Franklin will once again be guaranteed $7 million annually according to the terms released by Penn State, plus up to an additional $1 million per year based on certain incentives and bonuses.

Among the incentives and bonuses Franklin will be eligible for are an additional $350,000 to win the Big Ten title, $300,000 for a New Years' Six bowl and $100,000 if he's named Big Ten Coach of the Year. The full terms of the contract can be found here.

Notably, Franklin's buyout if he chooses to leave Penn State for another college or an NFL gig is $12 million if he leaves before April 1, 2022. It then drops to $8 million if he stays until Dec. 31, 2022 before dropping to $6 million after 2023, $2 million after 2024-25 and ultimately dropping to just $1 million per year from 2026-2031.

Why did James Franklin sign an extension with Penn State?
A native of Langhorne, Pa. and a former Division II quarterback at East Stroudsburg, Franklin has long made his love of Penn State known, calling it his "dream job," when he was hired in 2014.

Penn State has routinely been a 9-11 win team during Franklin's tenure in State College and even won a Big Ten title in 2016. But the Nittany Lions have struggled to keep pace with the likes of Ohio State, Alabama and Clemson during that time as well in recruiting, facilities, NIL deals, on-the-field results and more.

But that seems primed to change, and that's the biggest reason why Franklin says he opted to stay at Penn State.

"We've been able to create a roadmap of the resources needed to address academic support, community outreach, Name, Image and Likeness (NIL), facility improvements, student-athlete housing, technology upgrades, recruiting, training table and more," Franklin said.

"This renewed commitment to our student-athletes, community and fans reinforces all the reasons I've been proud to serve as your head football coach for the last eight years and why my commitment to Penn State remains steadfast

James Franklin's record at Penn State
Franklin's seemed to win everywhere he's gone. Granted, he only had one stop as a head coach prior to arriving at Penn State, but even as an assistant, Franklin was on successful teams.

His first head coaching gig came at Vanderbilt in 2011, a school which had won just two games the year before and had only been to three bowl games in the 100-plus years of history prior to Franklin's arrival.

He immediately turned around the Commodores program, going 6-7 and reaching a bowl game in his first year before rattling off two 9-4 seasons in a row, culminating in Vanderbilt ending the season ranked in both seasons, something which hadn't happened since 1948. He finished his tenure in Nashville with a record of 24-15.

Franklin then came to Penn State in 2014 where he's gone 67-32 as he gets ready to coach his 100th game with the Nittany Lions. The high point of his tenure thus far was in 2016 when the Nittany Lions won the Big Ten title and finished the season ranked No. 7 and led Penn State to 11 wins in three out of four years from 2016-19.

One of just 13 Black coaches currently at the FBS level, Franklin is among the winningest in that category. His 91 career FBS wins place him third all-time behind former Houston and Texas A&M coach Kevin Sumlin (95 career wins) and Stanford's David Shaw (93 career wins) for most wins by a Black FBS coach.

Terence Crawford vs. Shawn Porter results: Crawford retains WBO welterweight title with 10th-round stoppage

LAS VEGAS — All the questions about Terence Crawford have been answered.

For years, the only knock on him was that he lacked a signature victory. He finally picked up one — and in exceptional fashion — when he became the first fighter to stop Shawn Porter, recording a 10th-round TKO to retain his WBO welterweight championship in front of 11,568 fans at Michelob ULTRA Arena.
Now, the world will be clamoring for a unification bout with IBF and WBC champion Errol Spence Jr.

As it always has been against Porter, winning didn't come easy.

At the time of the stoppage, Crawford was up on all three scorecards: 86-85, 86-85 and 87-84. Porter routinely barreled inside and kept Crawford off balance with aggression and pressure. But Crawford began to time Porter's advances and then picked him off with counters that eventually wore down the former two-time champion.

In the 10th round, Crawford opened with a thudding left hand that deposited Porter on his backside. A frustrated Porter made it to his feet but was met with a scintillating combination that dropped Porter to his knees. Porter pounded on the canvas out of frustration and made it back to his feet again. Unfortunately, his father and trainer, Kenny Porter, decided that his son had had enough and threw in the towel.

Crawford improved to 38-0 with 29 knockouts. Porter became his ninth consecutive knockout victim. As for Porter, his career is at a crossroads of sorts as he falls to 31-4-1 and goes to the back of the line when it comes to title opportunities.

Here's how it all went down in Las Vegas.

Terence Crawford vs. Shawn Porter live updates, highlights
(All times Eastern.)

Round 10 (12:15 a.m.): Crawford drops Porter with a left hand to open the round! Porter is up and Crawford is a killer. He’s looking to finish the job. Crawford with a barrage that drops Crawford. Porter beats the canvas on his way up. Porter’s corner stops it! Wow!

Round 9 (12:13 a.m.): Short left hand by Porter lands to open the round. Big hook by Porter barely lands. Bud is unbothered. Body shot by Porter. Crawford looking for his spots and Porter isn’t making it easy. Crawford lands an uppercut on the inside and a body shot. 10-9, Crawford (86-85, Crawford)

Round 8 (12:09 a.m.): Crawford with a hard right hand and Porter comes straight at him throwing bombs. Crawford avoids and picks him off with a right hand. Beautiful sequence by Bud. Porter chops him on the inside with a short left and barrels inside. Hard left hand by Porter. Big right hand by Porter rattles Crawford. Crawford smiles and centers himself. How do you score this round? 10-9, Crawford (76-76)

Round 7 (12:04 a.m.): Porter strafes Bud with a left hand. Crawford gives Porter different looks and feints. They exchange left hands. Right hand by Porter lands and Crawford bounces off the ropes. Short counter right by Crawford as Porter rolls in. Porter won’t stop coming. Bud is smiling again. But he’s not throwing enough. 10-9, Porter (67-66, Porter)

Round 6 (12:01 a.m.): Crawford lands a big right hand They are going to war again. Crawford looking for the big shot and loading up. Porter comes roaring back. They clash heads. Crawford looks like he’s enjoying the dog fight. Porter roughs him up on the inside. Man, this is a damn fight. Counter left on the inside by Crawford. Lots of infighting to close a tight round. 10-9, Crawford (57-57)

Round 5 (11:57 p.m.): Porter working on Bud from the inside with some roughhousing. Crawford trying to walk Porter down. Flashes the jab. Porter bombing away on Crawford as he covers up. Not a lot gets through. Crawford walking him down. Porter is just outworking him in this round but Crawford is hoping he spent up his gas tank. 10-9, Porter (48-47, Porter)

Round 4 (11:52 p.m.): Hard left hook from Porter to open the round. Crawford lands a combination and a left hand. They exchange hard shots. Porter lands a right hand and Bud smiles. Porter with a jab and Bud responds to the body. Porter with a lunging hook that lands. Crawford with a check hook that almost Ricky Hatton'd Porter. They start swinging again. Closer round. 10-9, Crawford (38-38)

Round 3 (11:48 p.m): Crawford looks comfortable fighting lefty. Starts pushing Porter back. Porter lands a hard combination. Crawford tried to time and barely missed a counter hook. Porter stuns Bud with a left hand! Bud smiles but he was cracked. They are talking now. Porter is cut over the right eye. Crawford smiling but he knows that he's now in a fight. 10-9, Porter (29-28, Porter)

Round 2 (11:44 p.m.): Porter lands a jab and Bud switches to southpaw. Barely misses a counter. Lands a hard right hand on Porter. Porter cracks Bud with a hard right hand in response. Crawford lands a right hand and barely misses an uppercut. A firefight breaks out. Both landing hard shots. Bud with a counter uppercut and Porter with a right hand. Crawford lands the jab and smiles. We're about to have a good one. 10-9, Crawford (19-19)

Round 1 (11:40 p.m.): Porter rushes right at Crawford with a left hook and follows with a right hand that lands. Porter aims to rough Bud up along the ropes and gets tied up. Crawford is reading and timing Porter. Starts to fire the jab. Left hand by Porter lands. Hard jab by Bud lands. Crawford smirks at Porter. He may have figured out something already. 10-9, Porter

11:30 p.m.: "Showtime" Shawn Porter makes his entrance with WWE champion Big E and Grammy-nominated Hip Hop artist Rapsody while Terence Crawford keeps it simple by walking alone to LL Cool J's "I'm Bad."

10:58 p.m.: Through six rounds, Esquiva Falcao, the 2012 Olympic silver medalist from Brazil, has been applying immense pressure to Patrice Volny. Volny tried to work from the outside but Falcao's persistence to throttle Volny from the inside racked up rounds. But a nasty clash of heads in the sixth round split Falcao open above the left eye. Falcao is in a lot of pain and it's likely this fight is going to be stopped. Yup, it's over. Main event is next.

10:22 p.m.: Janibek Alimkhanuly didn't have much trouble turning back the challenge of Hassan N'Dam. He chopped him down over the course of eight rounds to earn the TKO stoppage. N'Dam's best years as a contender are clearly behind him, while Alimkhanuly remains one to watch in the middleweight division. As the rounds wore on, it became target practice for Alimkhanuly. N'Dam offered little resistance and was routinely clocked by power punches and a hard left hand. The mounting damage was too much for referee Kenny Bayless and the fight was called at the 2:40 mark of the eighth.

9:37 p.m.: As expected, Muratalia mowed down Araujo with an exceptional display of body punching and aggression to pick up the fifth-round TKO.

9 p.m.: We're live from Las Vegas and the pay-per-view portion of Crawford-Porter will kick off with Raymond Muratalla and Elias Araujo competing in a lightweight showdown.

Terence Crawford vs. Shawn Porter start time
Date: Saturday, Nov. 20
Main card time: 9 p.m. ET | 6 p.m. PT
Main event: 11 p.m. ET | 8 p.m. PT (approx.)
Crawford and Porter are set to step into the ring at about 11 p.m. ET. The night will begin with early prelims at 6 p.m. ET, followed by the prelim card at 7 p.m. ET and the main card at 9 p.m. ET.
We may earn an affiliate commission when you sign up for a streaming service through our links. Sporting News' affiliates have no influence over the editorial content included in this article.

What channel is Formula 1 on today? TV schedule, start time for 2021 Qatar Grand Prix

And then there were three.

Just three races in the 2021 Formula 1 world championship remain, and it looks like Red Bull's Max Verstappen is in the driver's seat to secure his first world driver's championship.
But hot on his tail is still Lewis Hamilton, who took home the victory in the Brazilian Grand Prix to once again tighten the gap at the top between he and Verstappen entering the final three sprints of the season.
To say "hot on his tail" would maybe be a bit of an undersell. Hamilton put together a fantastic trio of drives during the weekend, from qualifying to sprint qualifying to the race, starting in 10th and ending up first, even after taking a five-spot grid penalty for a violation.

It doesn't get much hotter than Qatar — or the 2021 F1 championship.

Here's what you need to know about this weekend's F1 race:

What channel is the F1 race on today?
Race: Qatar Grand Prix
Date: Sunday, Nov. 21
TV channel: ESPN 2
Live stream: fuboTV
The ESPN family of networks will broadcast all 2021 F1 races in the United States using Sky Sports' feed, with select races heading to ABC later in the season.

ESPN Deportes serves as the exclusive Spanish-language home for all 2021 F1 races in the U.S.

What time does the F1 race start today?
Date: Sunday, Nov. 21
Start time: 9 a.m. ET
The 9 a.m. ET start time for Sunday's race means the 2021 Qatar Grand Prix will start at 5 p.m. local time. Lights out will likely take place just after 9 a.m. ET. ESPN's prerace show usually airs in the hour before the start of the race.

Below is the complete TV schedule for the weekend's F1 events at the Qatar Grand Prix. All times are Eastern.

Date Event Time TV channel
Friday, Nov. 19 Practice 1 5:30 a.m. ESPN2
Friday, Nov. 19 Practice 2 9 a.m. ESPN2
Saturday, Nov. 20 Practice 3 6 a.m. ESPN2
Saturday, Nov. 20 Qualifying 9 a.m. ESPN2
Sunday, Nov. 21 Race 9 a.m. ESPN2
Formula 1 live stream for Qatar Grand Prix
For those who don't have a cable or satellite subscription, there are five major OTT TV streaming options that carry ESPN — fuboTV, Sling, Hulu, YouTubeTV and AT&T Now. Of the five, Hulu, fuboTV and YouTubeTV offer free-trial options.

Below are links to each.
For those who do have a cable or satellite subscription but are not in front of a TV, Formula 1 races in 2021 can be streamed live via phones, tablets and other devices on the ESPN app with authentication.

Formula 1 schedule 2021
In all, there are 23 scheduled races in the 2021 F1 season, with the Portuguese Grand Prix sliding onto the docket the first week in March. The originally scheduled Vietnam Grand Prix was removed after the arrest of Nguyen Duc Chung, while the Chinese Grand Prix is up in the air. It was originally scheduled for April 11 but will likely not take place this season.

The Singapore Grand Prix was also removed from the schedule, with the Turkish Grand Prix returning to the schedule in its stead.

All races will be broadcast in the U.S. on the ESPN family of networks, with the United States Grand Prix and Mexico City Grand Prix both airing on ABC.

Please note: The on-the-hour start times do not include the broadcast start time, which is typically five minutes before the start of the race. Times do not include ESPN's customary prerace shows.

MORE: Live stream F1 races all season on fuboTV (7-day free trial)

Here's the latest schedule:

Date Race Course Start time (ET) TV channel Winner
March 28 Bahrain Grand Prix Bahrain International Circuit 11 a.m. ESPN2 Lewis Hamilton (Mercedes)
April 18 Emilia Romagna Grand Prix Autodromo Internazionale Enzo e Dino Ferrari 9 a.m. ESPN Max Verstappen (Red Bull)
May 2 Portuguese Grand Prix Algarve International Circuit 10 a.m. ESPN Lewis Hamilton (Mercedes)
May 9 Spanish Grand Prix Circuit de Barcelona-Catalunya 9 a.m. ESPN Lewis Hamilton (Mercedes)
May 23 Monaco Grand Prix Circuit de Monaco 9 a.m. ESPN2 Max Verstappen (Red Bull)
June 6 Azerbaijan Grand Prix Baku City Circuit 8 a.m. ESPN Sergio Perez (Red Bull)
June 20 French Grand Prix Circuit Paul Ricard 9 a.m. ESPN Max Verstappen (Red Bull)
June 27 Styrian Grand Prix Red Bull Ring 9 a.m. ESPN Max Verstappen (Red Bull)
July 4 Austrian Grand Prix Red Bull Ring 9 a.m. ESPN Max Verstappen (Red Bull)
July 18 British Grand Prix Silverstone Circuit 10 a.m. ESPN Lewis Hamilton (Mercedes)
Aug. 1 Hungarian Grand Prix Hungaroring 9 a.m. ESPN Esteban Ocon (Alpine)
Aug. 29 Belgian Grand Prix Circuit de Spa-Francorchamps 9 a.m. ESPN2 Max Verstappen (Red Bull)
Sept. 5 Dutch Grand Prix Circuit Zandvoort 9 a.m. ESPN2 Max Verstappen (Red Bull)
Sept. 12 Italian Grand Prix Autodromo Nazionale di Monza 9 a.m. ESPN2 Daniel Ricciardo (McLaren)
Sept. 26 Russian Grand Prix Sochi Autodrom 8 a.m. ESPN2 Lewis Hamilton (Mercedes)
Oct. 10 Turkish Grand Prix Intercity Istanbul Park 8 a.m. ESPN2 Valtteri Bottas (Mercedes)
Oct. 24 United States Grand Prix Circuit of the Americas 3 p.m. ABC Max Verstappen (Red Bull)
Nov. 7 Mexico City Grand Prix Autodromo Hermanos Rodriguez 2 p.m. ABC Max Verstappen (Red Bull)
Nov. 14 São Paulo Grand Prix Autodromo Jose Carlos Pace Noon ESPN2 Lewis Hamilton (Mercedes)
Nov. 21 Qatar Grand Prix Losail International Circuit 9 a.m. ESPNews TBD
Dec. 5 Saudi Arabian Grand Prix Jeddah Street Circuit 11 p.m. ESPN2 TBD
Dec. 12 Abu Dhabi Grand Prix Yas Marina Circuit 8 a.m. ESPN2 TBD