Supercooled water has been caught morphing between two forms

Supercooled water is two of a kind, a new study shows.

Scientists have long suspected that water at subfreezing temperatures comes in two distinct varieties: a high-density liquid that appears at very high pressures and a low-density liquid at lower pressures. Now, ultrafast measurements have caught water morphing from one type of liquid to the other, confirming that hunch. The discovery, reported in the Nov. 20 Science, could help explain some of water’s quirks.

The experiment “adds more and more evidence to the idea that water really is two components … and that that is the reason that underlies why water is so weird,” says physicist Greg Kimmel of Pacific Northwest National Laboratory in Richland, Wash., who was not involved in the study.

When free from impurities, water can remain liquid below its typical freezing point of zero degrees Celsius, forming what’s called a supercooled liquid. But the dual nature of supercooled water was expected to appear in a temperature realm so difficult to study that it’s been dubbed “no-man’s-land.” Below around –40° C, water remains liquid for mere instants before it crystallizes into ice. Making the task even more daunting, the high-density phase appears only at very high pressures. Still, “people have dreamt about how to do an experiment,” says Anders Nilsson of Stockholm University.
Thanks to speedy experimental maneuvers, Nilsson and colleagues have infiltrated that no-man’s-land by monitoring water’s properties on a scale of nanoseconds. “This is one of the major accomplishments of this paper,” says computational chemist Gül Zerze of Princeton University. “I’m impressed with their work.”

The scientists started by creating a type of high-density ice. Then, a pulse from an infrared laser heated the ice, forming liquid water under high pressure. That water then expanded, and the pressure rapidly dropped. Meanwhile, the researchers used an X-ray laser to investigate how the structure of the water changed, based on how the X-rays scattered. As the pressure decreased, the water transitioned from a high-density to low-density fluid before crystallizing into ice.

Previous studies have used ultrafast techniques to find hints of water’s two-faced demeanor, but those have been done mainly at atmospheric pressure (SN: 9/28/20). In the new work, the water was observed at about 3,000 times atmospheric pressure and –68° C. “It’s the first time we have real experimental data at these pressures and temperatures,” says physicist Loni Kringle of Pacific Northwest National Laboratory, who was not involved with the experiment.

The result could indicate that supercooled water has a “critical point” — a certain pressure and temperature at which two distinct phases merge into one. In the future, Nilsson hopes to pinpoint that spot.

Such a critical point could explain why water is an oddball liquid. For most liquids, cooling makes them become denser and more difficult to compress. Water gets denser as it is cooled to 4° C, but becomes less dense as it is cooled further. Likewise, its compressibility increases as it’s cooled.

If supercooled water has a critical point, that could indicate that the water experienced in daily life is strange because, under typical pressures and temperatures, it is a supercritical liquid — a weird state that occurs beyond a critical point. Such a liquid would not be the high-density or low-density form, but would consist of some regions with a high-density arrangement of water molecules and other pockets of low density. The relative amounts of those two structures, which result from different arrangements of hydrogen bonds between the molecules, would change as the temperature changes, explaining why water behaves strangely as it is cooled.

So despite the fact that the experiment involved extreme pressures and temperatures, Nilsson says, “it influences water in our ordinary life.”

Why pandemic fatigue and COVID-19 burnout took over in 2022

2022 was the year many people decided the coronavirus pandemic had ended.

President Joe Biden said as much in an interview with 60 Minutes in September. “The pandemic is over,” he said while strolling around the Detroit Auto Show. “We still have a problem with COVID. We’re still doing a lot of work on it. But the pandemic is over.”

His evidence? “No one’s wearing masks. Everybody seems to be in pretty good shape.”

But the week Biden’s remarks aired, about 360 people were still dying each day from COVID-19 in the United States. Globally, about 10,000 deaths were recorded every week. That’s “10,000 too many, when most of these deaths could be prevented,” the World Health Organization Director-General Tedros Adhanom Ghebreyesus said in a news briefing at the time. Then, of course, there are the millions who are still dealing with lingering symptoms long after an infection.
Those staggering numbers have stopped alarming people, maybe because those stats came on the heels of two years of mind-boggling death counts (SN Online: 5/18/22). Indifference to the mounting death toll may reflect pandemic fatigue that settled deep within the public psyche, leaving many feeling over and done with safety precautions.

“We didn’t warn people about fatigue,” says Theresa Chapple-McGruder, an epidemiologist in the Chicago area. “We didn’t warn people about the fact that pandemics can last long and that we still need people to be willing to care about yourselves, your neighbors, your community.”

Public health agencies around the world, including in Singapore and the United Kingdom, reinforced the idea that we could “return to normal” by learning to “live with COVID.” The U.S. Centers for Disease Control and Prevention’s guidelines raised the threshold for case counts that would trigger masking (SN Online: 3/3/22). The agency also shortened suggested isolation times for infected people to five days, even though most people still test positive for the virus and are potentially infectious to others for several days longer (SN Online: 8/19/22).

The shifting guidelines bred confusion and put the onus for deciding when to mask, test and stay home on individuals. In essence, the strategy shifted from public health — protecting your community — to individual health — protecting yourself.
Doing your part can be exhausting, says Eric Kennedy, a sociologist specializing in disaster management at York University in Toronto. “Public health is saying, ‘Hey, you have to make the right choices every single moment of your life.’ Of course, people are going to get tired with that.”

Doing the right thing — from getting vaccinated to wearing masks indoors — didn’t always feel like it paid off on a personal level. As good as the vaccines are at keeping people from becoming severely ill or dying of COVID-19, they were not as effective at protecting against infection. This year, many people who tried hard to make safe choices and had avoided COVID-19 got infected by wily omicron variants (SN Online: 4/22/22). People sometimes got reinfected — some more than once (SN: 7/16/22 & 7/30/22, p. 8).
Those infections may have contributed to a sense of futility. “Like, ‘I did my best. And even with all of that work, I still got it. So why should I try?’ ” says Kennedy, head of a Canadian project monitoring the sociological effects of the COVID-19 pandemic.

Getting vaccinated, masking and getting drugs or antibody treatments can reduce the severity of infection and may cut the chances of infecting others. “We should have been talking about this as a community health issue and not a personal health issue,” Chapple-McGruder says. “We also don’t talk about the fact that our uptake [of these tools] is nowhere near what we need” to avoid the hundreds of daily deaths.

A lack of data about how widely the coronavirus is still circulating makes it difficult to say whether the pandemic is ending. In the United States, the influx of home tests was “a blessing and a curse,” says Beth Blauer, data lead for the Johns Hopkins University Coronavirus Resource Center. The tests gave an instant readout that told people whether they were infected and should isolate. But because those results were rarely reported to public health officials, true numbers of cases became difficult to gauge, creating a big data gap (SN Online: 5/27/22).
The flow of COVID-19 data from many state and local agencies also slowed to a trickle. In October, even the CDC began reporting cases and deaths weekly instead of daily. Altogether, undercounting of the coronavirus’s reach became worse than ever.

“We’re being told, ‘it’s up to you now to decide what to do,’ ” Blauer says, “but the data is not in place to be able to inform real-time decision making.”

With COVID-19 fatigue so widespread, businesses, governments and other institutions have to find ways to step up and do their part, Kennedy says. For instance, requiring better ventilation and filtration in public buildings could clean up indoor air and reduce the chance of spreading many respiratory infections, along with COVID-19. That’s a behind-the-scenes intervention that individuals don’t have to waste mental energy worrying about, he says.

The bottom line: People may have stopped worrying about COVID-19, but the virus isn’t done with us yet. “We have spent two-and-a-half years in a long, dark tunnel, and we are just beginning to glimpse the light at the end of that tunnel. But it is still a long way off,” WHO’s Tedros said. “The tunnel is still dark, with many obstacles that could trip us up if we don’t take care.” If the virus makes a resurgence, will we see it coming and will we have the energy to combat it again?

50 years ago, physicists found the speed of light

A group at the National Bureau of Standards at B­oulder, Colo., now reports an extremely accurate [speed of light] measurement using the wavelength and frequency of a helium-neon laser.… The result gives the speed of light as 299,792.4562 kilometers per second.

Update
That 1972 experiment measured the two-way speed of light, or the average speed of photons that traveled from their source to a reflective surface and back. The result, which still holds up, helped scientists redefine the standard length of the meter (SN: 10/22/83, p. 263). But they weren’t done putting light through its paces. In the late 1990s and early 2000s, photons set a record for slowest measured speed of light at 17 meters per second and froze in their tracks for one-thousandth of a second (SN: 1/27/01, p. 52). For all that success, one major hurdle remains: directly testing the one-way speed of light. The measurement, which many scientists say is impossible to make, could resolve the long-standing question of whether the speed of light is uniform in all directions.

Protecting the brain from infection may start with a gut reaction

Some immune defenses of the brain may have their roots in the gut.

A new study in mice finds that immune cells are first trained in the gut to recognize and launch attacks on pathogens, and then migrate to the brain’s surface to protect it, researchers report online November 4 in Nature. These cells were also found in surgically removed parts of human brains.

Every minute, around 750 milliliters of blood flow through the brain, giving bacteria, viruses or other blood-borne pathogens an opportunity to infect the organ. For the most part, the invaders are kept out by three membrane layers, called the meninges, which wrap around the brain and spinal cord and act as a physical barrier. If a pathogen does manage to breach that barrier, the researchers say, the immune cells trained in the gut are ready to attack by producing a battalion of antibodies.

The most common route for a pathogen to end up in the bloodstream is from the gut. “So, it makes perfect sense for these [immune cells] to be educated, trained and selected to recognize things that are present in the gut,” says Menna Clatworthy, an immunologist at the University of Cambridge.

Clatworthy’s team found antibody-producing plasma cells in the leathery meninges, which lie between the brain and skull, in both mice and humans. These immune cells produced a class of antibodies called immunoglobulin A, or IgA.

These cells and antibodies are mainly found in the inner lining of the gut and lungs, so the scientists wondered if the cells on the brain had any link to the gut. It turned out that there was: Germ-free mice, which had no microbes in their guts, didn’t have any plasma cells in their meninges either. However, when bacteria from the poop of other mice and humans were transplanted into the mice’s intestines, their gut microbiomes were restored, and the plasma cells then appeared in the meninges.

“This was a powerful demonstration of how important the gut could be at determining what is found in the meninges,” Clatworthy says.

Researchers captured microscope images of an attack in the meninges of mice that was led by plasma cells that had likely been trained in the guts. When the team implanted a pathogenic fungus, commonly found in the intestine, into the mice’s bloodstream, the fungus attempted to enter the brain through the walls of blood vessels in the meninges. However, plasma cells in the membranes formed a mesh made of IgA antibodies around the pathogen, blocking its entry. The plasma cells are found along the blood vessels, Clatworthy says, where they can quickly launch an attack on pathogens.

“To my knowledge, this is the first time anyone has shown the presence of plasma cells in the meninges. The study has rewritten the paradigm of what we know about these plasma cells and how they play a critical role in keeping our brain healthy,” says Matthew Hepworth, an immunologist at the University of Manchester in England who was not involved with the study. More research is needed to classify how many of the plasma cells in the meninges come from the gut, he says.

The finding adds to growing evidence that gut microbes can play a role in brain diseases. A previous study, for instance, suggested that in mice, boosting a specific gut bacterium could help fight amyotrophic lateral sclerosis, or ALS, a fatal neurological disease that results in paralysis (SN: 7/22/19). And while the new study found the plasma cells in the brains of healthy mice, previous research has found other gut-trained cells in the brains of mice with multiple sclerosis, an autoimmune disease of the brain and the spinal cord.

For now, the researchers want to understand what cues plasma cells follow in the guts to know it is time for them to embark on a journey to the brain.

With Theta, 2020 sets the record for most named Atlantic storms

It’s official: 2020 now has the most named storms ever recorded in the Atlantic in a single year.

On November 9, a tropical disturbance brewing in the northeastern Atlantic Ocean gained enough strength to become a subtropical storm. With that, Theta became the year’s 29th named storm, topping the 28 that formed in 2005.

With maximum sustained winds near 110 kilometers per hour as of November 10, Theta is expected to churn over the open ocean for several days. It’s too early to predict Theta’s ultimate strength and trajectory, but forecasters with the National Oceanic and Atmospheric Administration say they expect the storm to weaken later in the week.

If so, like most of the storms this year, Theta likely won’t become a major hurricane. That track record might be the most surprising thing about this season — there’s been a record-breaking number of storms, but overall they’ve been relatively weak. Only five — Laura, Teddy, Delta, Epsilon and Eta — have become major hurricanes with winds topping 178 kilometers per hour, although only Laura and Eta made landfall near the peak of their strength as Category 4 storms.

Even so, the 2020 hurricane season started fast, with the first nine storms arriving earlier than ever before (SN: 9/7/20). And the season has turned out to be the most active since naming began in 1953, thanks to warmer-than-usual water in the Atlantic and the arrival of La Niña, a regularly-occurring period of cooling in the Pacific, which affects winds in the Atlantic and helps hurricanes form (SN: 9/21/19). If a swirling storm reaches wind speeds of 63 kilometers per hour, it gets a name from a list of 21 predetermined names. When that list runs out, the storm gets a Greek letter.

While the wind patterns and warm Atlantic water temperatures set the stage for the string of storms, it’s unclear if climate change is playing a role in the number of storms. As the climate warms, though, you would expect to see more of the destructive, high-category storms, says Kerry Emanuel, an atmospheric scientist at MIT. “And this year is not a poster child for that.” So far, no storm in 2020 has been stronger than a Category 4. The 2005 season had multiple Category 5 storms, including Hurricane Katrina (SN: 12/20/05).

There’s a lot amount of energy in the ocean and atmosphere this year, including the unusually warm water, says Emanuel. “The fuel supply could make a much stronger storm than we’ve seen,” says Emanuel, “so the question is: What prevents a lot of storms from living up to their potential?”
A major factor is wind shear, a change in the speed or direction of wind at different altitudes. Wind shear “doesn’t seem to have stopped a lot of storms from forming this year,” Emanuel says, “but it inhibits them from getting too intense.” Hurricanes can also create their own wind shear, so when multiple hurricanes form in close proximity, they can weaken each other, Emanuel says. And at times this year, several storms did occupy the Atlantic simultaneously — on September 14, five storms swirled at once.

It’s not clear if seeing hurricane season run into the Greek alphabet is a “new normal,” says Emanuel. The historical record, especially before the 1950s is spotty, he says, so it’s hard to put this year’s record-setting season into context. It’s possible that there were just as many storms before naming began in the ‘50s, but that only the big, destructive ones were recorded or noticed. Now, of course, forecasters have the technology to detect all of them, “so I wouldn’t get too bent out of shape about this season,” Emanuel says.

Some experts are hesitant to even use the term “new normal.”

“People talk about the ‘new normal,’ and I don’t think that is a good phrase,” says James Done, an atmospheric scientist at the National Center for Atmospheric Research in Boulder, Colo. “It implies some new stable state. We’re certainly not in a stable state — things are always changing.”

Climate change may be shrinking tropical birds

In a remote corner of Brazil’s Amazon rainforest, researchers have spent decades catching and measuring birds in a large swath of forest unmarred by roads or deforestation. An exemplar of the Amazon’s dazzling diversity, the experimental plot was to act as a baseline that would reveal how habitat fragmentation, from logging or roads, can hollow out rainforests’ wild menagerie.

But in this pristine pocket of wilderness, a more subtle shift is happening: The birds are shrinking.

Over 40 years, dozens of Amazonian bird species have declined in mass. Many species have lost nearly 2 percent of their average body weight each decade, researchers report November 12 in Science Advances. What’s more, some species have grown longer wings. The changes coincide with a hotter, more variable climate, which could put a premium on leaner, more efficient bodies that help birds stay cool, the researchers say.

“Climate change isn’t something of the future. It’s happening now and has been happening and has effects we haven’t thought of,” says Ben Winger, an ornithologist at the University of Michigan in Ann Arbor who wasn’t involved in the research but has documented similar shrinkage in migratory birds. Seeing the same patterns in so many bird species across widely different contexts “speaks to a more universal phenomenon,” he says.

Biologists have long linked body size and temperature. In colder climates, it pays to be big because having a smaller surface area relative to one’s volume reduces heat loss through the skin and keeps the body warmer. As the climate warms, “you’d expect shrinking body sizes to help organisms off-load heat better,” says Vitek Jirinec, an ecologist at the Integral Ecology Research Center in Blue Lake, Calif.

Many species of North American migratory birds are getting smaller, Winger and colleagues reported in 2020 in Ecology Letters. Climate change is the likely culprit, Winger says, but since migrators experience a wide range of conditions while globe-trotting, other factors such as degraded habitats that birds may encounter can’t be ruled out.

To see if birds that stay put have also been shrinking, Jirinec and colleagues analyzed data on nonmigratory birds collected from 1979 to 2019 in an intact region of the Amazon that spans 43 kilometers. The dataset includes measurements such as mass and wing length for over 11,000 individual birds of 77 species. The researchers also examined climate data for the region.
All species declined in mass over this period, the researchers found, including birds as different as the Rufous-capped antthrush (Formicarius colma), which snatches insects off the forest floor, and the Amazonian motmot (Momotus momota), which scarfs down fruit up in trees. Species lost from about 0.1 percent to nearly 2 percent of their average body weight each decade. The motmot, for example, shrunk from 133 grams to about 127 grams over the study period.

These changes coincided with an overall increase in the average temperature of 1 degree Celsius in the wet season and 1.65 degrees C in the dry season. Temperature and precipitation also became more variable over the time period, and these short-term fluctuations, such as an especially hot or dry season, better explained the size trends than the steady increase in temperature.

“The dry season is really stressful for birds,” Jirinec says. Birds’ mass decreased the most in the year or two after especially hot and dry spells, which tracks with the idea that birds are getting smaller to deal with heat stress.

Other factors, like decreased food availability, could also lead to smaller sizes. But since birds with widely different diets all declined in mass, a more pervasive force like climate change is the likely cause, Jirinec says.

Wing length also grew for 61 species, with a maximum increase of about 1 percent per decade. Jirinec thinks that longer wings make for more efficient, and thus cooler, fliers. For instance, a fighter jet, with its heavy body and compact wings, takes enormous power to maneuver. A light and long-winged glider, by contrast, can cruise along much more efficiently.

“Longer wings may be helping [birds] fly more efficiently and produce less metabolic heat,” which can be beneficial in hotter conditions, he says. “But that’s just a hypothesis.” This body change was most pronounced in birds that spend their time higher up in the canopy, where conditions are hotter and drier than the forest floor.

Whether these changes in shape and size represent an evolutionary adaptation to climate change, or simply a physiological response to warmer temperatures, remains unclear (SN: 5/8/20). Whichever is the case, Jirinec suggests that the change shows the pernicious power of human activity (SN: 10/26/21).

“The Amazon rainforest is mysterious, remote and teeming with biodiversity,” he says. “This study suggests that even in places like this, far removed from civilization, you can see signatures of climate change.”

Satellite swarms may outshine the night sky’s natural constellations

Fleets of private satellites orbiting Earth will be visible to the naked eye in the next few years, sometimes all night long.

Companies like SpaceX and Amazon have launched hundreds of satellites into low orbits since 2019, with plans to launch thousands more in the works — a trend that’s alarming astronomers. The goal of these satellite “mega-constellations” is to bring high-speed internet around the globe, but these bright objects threaten to disrupt astronomers’ ability to observe the cosmos (SN: 3/12/20). “For astronomers, this is kind of a pants-on-fire situation,” says radio astronomer Harvey Liszt of the National Radio Astronomical Observatory in Charlottesville, Va.

Now, a new simulation of the potential positions and brightness of these satellites shows that, contrary to earlier predictions, casual sky watchers will have their view disrupted, too. And parts of the world will be affected more than others, astronomer Samantha Lawler of the University of Regina in Canada and her colleagues report in a paper posted September 9 at arXiv.org.

“How will this affect the way the sky looks to your eyeballs?” Lawler asks. “We humans have been looking up at the night sky and analyzing patterns there for as long as we’ve been human. It’s part of what makes us human.” These mega-constellations could mean “we’ll see a human-made pattern more than we can see the stars, for the first time in human history.”
Flat, smooth surfaces on satellites can reflect sunlight depending on their position in the sky. Earlier research had suggested that most of the new satellites would not be visible with the naked eye.

Lawler, along with Aaron Boley of the University of British Columbia and Hanno Rein of the University of Toronto at Scarborough in Canada, started building their simulation with public data about the launch plans of four companies — SpaceX’s Starlink, Amazon’s Kuiper, OneWeb and StarNet/GW — that had been filed with the U.S. Federal Communications Commission and the International Telecommunications Union. The filings detailed the expected orbital heights and angles of 65,000 satellites that could be launched over the next few years.

“It’s impossible to predict the future, but this is realistic,” says astronomer Meredith Rawls of the University of Washington in Seattle, who was not involved in the new study. “A lot of times when people make these simulations, they pick a number out of a hat. This really justifies the numbers that they pick.”

There are currently about 7,890 objects in Earth orbit, about half of which are operational satellites, according to the U.N. Office for Outer Space Affairs. But that number is increasing fast as companies launch more and more satellites (SN: 12/28/20). In August 2020, there were only about 2,890 operational satellites.

Next, the researchers computed how many satellites will be in the sky at different times of year, at different hours of the night and from different positions on Earth’s surface. They also estimated how bright the satellites were likely to be at different hours of the day and times of the year.

That calculation required a lot of assumptions because companies aren’t required to publish details about their satellites like the materials they’re made of or their precise shapes, both of which can affect reflectivity. But there are enough satellites in orbit that Lawler and colleagues could compare their simulated satellites to the light reflected down to Earth by the real ones.

The simulations showed that “the way the night sky is going to change will not affect all places equally,” Lawler says. The places where naked-eye stargazing will be most affected are at latitudes 50° N and 50° S, regions that cross lower Canada, much of Europe, Kazakhstan and Mongolia, and the southern tips of Chile and Argentina, the researchers found.
“The geometry of sunlight in the summer means there will be hundreds of visible satellites all night long,” Lawler says. “It’s bad everywhere, but it’s worse there.” For her, this is personal: She lives at 50° N.

Closer to the equator, where many research observatories are located, there is a period of about three hours in the winter and near the time of the spring and fall equinoxes with few or no sunlit satellites visible. But there are still hundreds of sunlit satellites all night at these locations in the summer.

A few visible satellites can be a fun spectacle, Lawler concedes. “I think we really are at a transition point here where right now, seeing a satellite, or even a Starlink train, is cool and different and wow, that’s amazing,” she says. “I used to look up when the [International Space Station] was overhead.” But she compares the coming change to watching one car go down the road 100 years ago, versus living next to a busy freeway now.

“Every sixteenth star will actually be moving,” she says. “I hope I’m wrong. I’ve never wanted to be wrong about a simulation more than this. But without mitigation, this is what the sky will look like in a few years.”

Astronomers have been meeting with representatives from private companies, as well as space lawyers and government officials, to work out compromises and mitigation strategies. Companies have been testing ways to reduce reflectivity, like shading the satellites with a “visor.” Other proposed strategies include limiting the satellites to lower orbits, where they move faster across the sky and leave a fainter streak in telescope images. Counterintuitively, lower satellites may be better for some astronomy research, Rawls says. “They move out of the way quick.”

But that lower altitude strategy will mean more visible satellites for other parts of the world, and more that are visible to the naked eye. “There’s not some magical orbital altitude that solves all our problems,” Rawls says. “There are some latitudes on Earth where no matter what altitude you put your satellites at, they’re going to be all over the darn place. The only way out of this is fewer satellites.”

There are currently no regulations concerning how bright a satellite can be or how many satellites a private company can launch. Scientists are grateful that companies are willing to work with them, but nervous that their cooperation is voluntary.

“A lot of the people who work on satellites care about space. They’re in this industry because they think space is awesome,” Rawls says. “We share that, which helps. But it doesn’t fix it. I think we need to get some kind of regulation as soon as possible.” (Representatives from Starlink, Kuiper and OneWeb did not respond to requests for comment.)

Efforts are under way to bring the issue to the attention of the United Nations and to try to use existing environmental regulations to place limits on satellite launches, says study coauthor Boley (who also lives near 50° N).

Analogies to other global pollution problems, like space junk, can provide inspiration and precedents, he says. “There are a number of ways forward. We shouldn’t just lose hope. We can do things about this.”

College Football Playoff rankings: Who are the top four teams in fourth CFP poll of 2021?

Two more top-10 teams in contention for the College Football Playoff lost on Saturday, creating yet more work for the selection committee. Well, sort of.

While the committee was forced to reshuffle the rankings after the losses of No. 3 Oregon (38-7 to No. 23 Utah) and No. 7 Michigan State (56-7 to No. 4 Ohio State), those outcomes actually created a more streamlined top 25 in the final weeks of the season.
The selection committee no longer has to explain why No. 6 Michigan ranked ahead of Michigan State, despite the Spartans' head-to-head victory over the Wolverines. Nor do they need to worry about where to rank Oregon, which beat Ohio State in Week 2, well before the Buckeyes' resurgence. The only actual problem created from Saturday's slate of games wasn't even a problem at all: Where to rank Alabama in relation to Ohio State.

The committee chose to push the Buckeyes ahead of the Crimson Tide in the latest rankings. That decision ultimately won't matter, considering Alabama must face No. 1 Georgia in the SEC championship game. A win there would give Nick Saban and Co. the top overall seed. A loss would eliminate the Tide from championship contention.

The committee will pay close attention to "The Game" and Bedlam in Week 13, two rivalry games that feature 10-1 opponents in Ohio State, Michigan, Oklahoma and Oklahoma State. That will further clear up the playoff picture, the final rankings for which are quickly approaching.

With that, here are the top 25 teams in the latest CFP rankings:
College Football Playoff rankings 2021
Who are the top four CFP teams of fourth CFP poll of 2021?
Ranking Team Record
1 Georgia 11-0
2 Ohio State 10-1
3 Alabama 10-1
4 Cincinnati 11-0
Who are the first two teams out of fourth CFP poll of 2021?
Ranking Team Record
5 Michigan 10-1
6 Notre Dame 10-1
CFP top 25 rankings from fourth CFP poll of 2021
Rank Team Record
1 Georgia 11-0
2 Ohio State 10-1
3 Alabama 10-1
4 Cincinnati 11-0
5 Michigan 10-1
6 Notre Dame 10-1
7 Oklahoma State 10-1
8 Baylor 9-2
9 Ole Miss 9-2
10 Oklahoma 10-1
11 Oregon 9-2
12 Michigan State 9-2
13 BYU 9-2
14 Wisconsin 8-3
15 Texas A&M 8-3
16 Iowa 9-2
17 Pittsburgh 9-2
18 Wake Forest 9-2
19 Utah 8-3
20 NC State 8-3
21 San Diego State 10-1
22 UTSA 11-0
23 Clemson 8-3
24 Houston 10-1
25 Arkansas 7-4

Terence Crawford vs. Shawn Porter: A fight that neither can afford to lose

Far too often, fighters say that they can’t afford to lose when they, in fact, can afford to lose.

A loss isn't the end for all fighters and the greatest have come back from significant losses in their career. All losses aren't the same and there's often an overreaction to how much a loss hurts the future of a fighter.
Take, for instance, Canelo Alvarez vs. Caleb Plant. Plant was never expected to win the fight. Of course, he didn’t want to lose and the spoils go to the victor but the concept of a moral victory applied. He made a good showing of himself and will certainly be back, perhaps with more eyeballs on him now than before.

There are rarely fights that neither can afford to lose because of just how devastating to their future the loss would be.

Terence Crawford vs. Shawn Porter on Nov. 20 in Las Vegas is one of those fights.

Why Terence Crawford can’t afford to lose
If Terence Crawford loses to Shawn Porter, the allure is gone. And maybe he wasn’t as good as we thought he was.

Although he was named the Fighter of the Year by ESPN and the Boxing Writers Association of America all the way back in 2014 (and again by ESPN in 2017), the current WBO welterweight champion remains in pursuit of a signature win. The critics have had every right to have their questions because as great as Crawford has looked, his resume lacks that one opponent who is respected for his accomplishments and accolades.

Shawn Porter is that opponent.

A two-time welterweight champion that has given hell to every single opponent that he’s stepped into the ring with. With Manny Pacquiao retired, an argument can be made that Porter has the most impressive resume of every fighter in the 147-pound weight class. And if it wasn’t for Canelo, Porter might have the best resume in all of boxing. Although he hasn’t won all of his big fights, he has yet to be dominated by an opponent.
He’s defeated Danny Garcia, Yordenis Ugas, Adrian Broner while losing narrow decisions to Keith Thurman, Errol Spence Jr. and Kell Brook. As a matter of fact, 11 of his last 13 opponents were world titleholders.

It doesn’t get much better than that. And a Crawford victory opens the door wide open for him to challenge Spence and the rest of the division in an attempt to become undisputed in two division. They won't be able to deny him any longer unless they are scared. It's just that simple.

With all of this being said, one would think that Crawford could afford to lose given Porter’s credentials. Well, that’s certainly not the case. He has hovered as one of the top five pound-for-pound fighters without a marquee name on his resume because he’s been that damn good inside of the squared circle.

But what he hasn’t been is tested by an opponent who has given the best 147-pounders 36 minutes of pressure.
Crawford may have graduated with high honors from his pugilism undergraduate but now he has to prove that he’s Magna Cum Laude and get his master’s degree in the sweet science.

He has an opportunity to barely pass the test like Errol Spence and still be considered as one of the best in the world or he gets mowed down by Porter’s aggressive style and find himself possibly removed from the pound for pound list. Or, he destroys Porter and is undeniably the top dog of the division and once again in the conversation as the best fighter in the world.

Of even more significance is that he’ll be a free agent. It’s no secret that Top Rank has struggled to get him a marquee fight as opponents ranging from Errol Spence Jr., Keith Thurman and the recently retired Manny Pacquiao fought for a rival promotion. There’s an expectation that Crawford will see what’s on the other side of the street if he gets past Porter. But at 34 years of age and facing constant struggles to prove he’s a marketable star, a loss would be devastating to his future.

Bob Arum has spoken in less than flattering terms about Crawford while PBC will have proven their point that Crawford is not in the league of their current stable. Where does Crawford go if he loses all of his leverage?

He cannot afford to lose on Saturday night.

Why Shawn Porter can’t afford to lose
Boxing has been kind to Shawn Porter because Porter has been kind to the sport. He’s a fighter who could care less about politics and risks. He’ll fight anybody at any time. And if you step into the ring with Porter, it will be less fun for you than it is for him. He enjoys plowing into opponents and forcing them to fight his fight. It’s rare to find a Porter fight that lacked excitement and fans have had the opportunity to enjoy Porter’s fearlessness inside of the squared circle.

But, eventually, you have to win the big one.

Porter is a two-time world champion who is 4-3 in major world title bouts. He fell just a hair short against Keith Thurman, Kell Brook and Errol Spence Jr. And while all three of those fights were a round or two away from seeing Porter victorious, the fact remains that he lost. The record books won't explain how close he was and future generations just won't care. The stats are the stats.

The expectation is that Porter will give Crawford all he can handle but fail to get the job done. Oddsmakers have installed him as a significant underdog despite his in-ring accomplishments. This is a sign that many people think that his time is up. And if he ends up proving the naysayers right, the idea that Shawn Porter is one of the best welterweights in the world is likely over.

Simply put, if he loses, he goes from contender to gatekeeper. He becomes the guy that young fighters target as a name for their resume. It’s highly unlikely that he’ll find himself in a marquee fight as the A-side and will spend the rest of his career as an opponent. Jarron "Boots" Ennis and Vergil Ortiz will look to use Porter's name as a stepping stone.

Nobody wants to be a stepping stone. But that's how Porter will be viewed if he is unable to get the job done.

It’s also possible that his hall of fame credentials hinges entirely on this fight.

A victory finds Porter back in the mix and rematches with Yordenis Ugas and Errol Spence Jr. will have to be made. There will be a reason to believe that Porter is absolutely one of the best fighters in the world and he'll certainly crash the pound for pound list with an exceptional performance.

But it all goes up in a cloud of smoke if he loses.

As you can see, the pendulum swing for both fighters is extreme. Neither can afford to lose because their respective futures rely so heavily on what happens inside of those 12 rounds. The stakes are high on both sides and that's more than enough reason to watch what could be an incredible fight with the respective futures of both Crawford and Porter hanging in the balance.

Athlete reactions to Kyle Rittenhouse not guilty verdict by jury

Kyle Rittenhouse has been found not guilty.

A jury in Kenosha, Wisconsin, on Friday found Rittenhouse not guilty of homicide and other charges.
On Aug. 25, 2020, Rittenhouse shot at four men, killing two and wounding a third, with a semiautomatic rifle. Rittenhouse was in downtown Kenosha to protect a car dealership during unrest following the police shooting of Jacob Blake.
Blake, a Black man, had been shot multiple times by Rusten Sheskey, a white police officer, in Kenosha, leaving him paralyzed from the waist down. Sheskey was ultimately not charged by state or federal prosecutors.

Rittenhouse, then a 17-year-old from Antioch, Ill., joined a group of other armed people in downtown Kenosha. He shot Joseph Rosenbaum, Anthony Huber and Gaige Grosskreutz, the latter of whom survived. Rittenhouse turned himself in to police in Antioch on Aug. 26, and was extradited to Kenosha, where he was charged with the following:

First-degree reckless homicide, use of a dangerous weapon
First-degree recklessly endangering safety, use of a dangerous weapon
First-degree intentional homicide, use of a dangerous weapon
Attempted first-degree intentional homicide, use of a dangerous weapon
First-degree recklessly endangering safety, use of a dangerous weapon
Possession of a dangerous weapon by a person under 18 (later dismissed)
Failure to comply with an emergency order from state or local government (later dismissed)
Most of the incident was captured on video, and the subsequent trial became heavily polarized. The prosecution in the case argued that Rittenhouse provoked protesters before shooting at them, while the defense argued that Rittenhouse acted in self defense.

The Milwaukee Bucks are scheduled to play at home tonight at 8 p.m. ET/7 p.m. CT. The Bucks, who play 40 miles from Kenosha, were the first NBA team to boycott following the protests in the summer of 2020.

Following the verdict in the case that captured national attention, the sports world responded to the news that Rittenhouse was ruled not guilty.
Sporting News will continue to monitor and update news from around the sports world as it unfolds.